{"title":"A categorical Künneth formula for constructible Weil sheaves","authors":"Tamir Hemo, Timo Richarz, Jakob Scholbach","doi":"10.2140/ant.2024.18.499","DOIUrl":null,"url":null,"abstract":"<p>We prove a Künneth-type equivalence of derived categories of lisse and constructible Weil sheaves on schemes in characteristic <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>></mo> <mn>0</mn></math> for various coefficients, including finite discrete rings, algebraic field extensions <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi>\n<mo>⊃</mo> <msub><mrow><mi>ℚ</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi><mo>≠</mo><mi>p</mi></math>, and their rings of integers <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒪</mi></mrow><mrow><mi>E</mi></mrow></msub></math>. We also consider a variant for ind-constructible sheaves which applies to the cohomology of moduli stacks of shtukas over global function fields. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"22 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.499","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove a Künneth-type equivalence of derived categories of lisse and constructible Weil sheaves on schemes in characteristic for various coefficients, including finite discrete rings, algebraic field extensions , , and their rings of integers . We also consider a variant for ind-constructible sheaves which applies to the cohomology of moduli stacks of shtukas over global function fields.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.