Assessing the efficacy of target adaptive sampling long-read sequencing through hereditary cancer patient genomes.

IF 4.7 2区 医学 Q1 GENETICS & HEREDITY
Wataru Nakamura, Makoto Hirata, Satoyo Oda, Kenichi Chiba, Ai Okada, Raúl Nicolás Mateos, Masahiro Sugawa, Naoko Iida, Mineko Ushiama, Noriko Tanabe, Hiromi Sakamoto, Shigeki Sekine, Akira Hirasawa, Yosuke Kawai, Katsushi Tokunaga, Shin-Ichi Tsujimoto, Norio Shiba, Shuichi Ito, Teruhiko Yoshida, Yuichi Shiraishi
{"title":"Assessing the efficacy of target adaptive sampling long-read sequencing through hereditary cancer patient genomes.","authors":"Wataru Nakamura, Makoto Hirata, Satoyo Oda, Kenichi Chiba, Ai Okada, Raúl Nicolás Mateos, Masahiro Sugawa, Naoko Iida, Mineko Ushiama, Noriko Tanabe, Hiromi Sakamoto, Shigeki Sekine, Akira Hirasawa, Yosuke Kawai, Katsushi Tokunaga, Shin-Ichi Tsujimoto, Norio Shiba, Shuichi Ito, Teruhiko Yoshida, Yuichi Shiraishi","doi":"10.1038/s41525-024-00394-z","DOIUrl":null,"url":null,"abstract":"<p><p>Innovations in sequencing technology have led to the discovery of novel mutations that cause inherited diseases. However, many patients with suspected genetic diseases remain undiagnosed. Long-read sequencing technologies are expected to significantly improve the diagnostic rate by overcoming the limitations of short-read sequencing. In addition, Oxford Nanopore Technologies (ONT) offers adaptive sampling and computationally driven target enrichment technology. This enables more affordable intensive analysis of target gene regions compared to standard non-selective long-read sequencing. In this study, we developed an efficient computational workflow for target adaptive sampling long-read sequencing (TAS-LRS) and evaluated it through application to 33 genomes collected from suspected hereditary cancer patients. Our workflow can identify single nucleotide variants with nearly the same accuracy as the short-read platform and elucidate complex forms of structural variations. We also newly identified several SINE-R/VNTR/Alu (SVA) elements affecting the APC gene in two patients with familial adenomatous polyposis, as well as their sites of origin. In addition, we demonstrated that off-target reads from adaptive sampling, which is typically discarded, can be effectively used to accurately genotype common single-nucleotide polymorphisms (SNPs) across the entire genome, enabling the calculation of a polygenic risk score. Furthermore, we identified allele-specific MLH1 promoter hypermethylation in a Lynch syndrome patient. In summary, our workflow with TAS-LRS can simultaneously capture monogenic risk variants including complex structural variations, polygenic background as well as epigenetic alterations, and will be an efficient platform for genetic disease research and diagnosis.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"9 1","pages":"11"},"PeriodicalIF":4.7000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874402/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-024-00394-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Innovations in sequencing technology have led to the discovery of novel mutations that cause inherited diseases. However, many patients with suspected genetic diseases remain undiagnosed. Long-read sequencing technologies are expected to significantly improve the diagnostic rate by overcoming the limitations of short-read sequencing. In addition, Oxford Nanopore Technologies (ONT) offers adaptive sampling and computationally driven target enrichment technology. This enables more affordable intensive analysis of target gene regions compared to standard non-selective long-read sequencing. In this study, we developed an efficient computational workflow for target adaptive sampling long-read sequencing (TAS-LRS) and evaluated it through application to 33 genomes collected from suspected hereditary cancer patients. Our workflow can identify single nucleotide variants with nearly the same accuracy as the short-read platform and elucidate complex forms of structural variations. We also newly identified several SINE-R/VNTR/Alu (SVA) elements affecting the APC gene in two patients with familial adenomatous polyposis, as well as their sites of origin. In addition, we demonstrated that off-target reads from adaptive sampling, which is typically discarded, can be effectively used to accurately genotype common single-nucleotide polymorphisms (SNPs) across the entire genome, enabling the calculation of a polygenic risk score. Furthermore, we identified allele-specific MLH1 promoter hypermethylation in a Lynch syndrome patient. In summary, our workflow with TAS-LRS can simultaneously capture monogenic risk variants including complex structural variations, polygenic background as well as epigenetic alterations, and will be an efficient platform for genetic disease research and diagnosis.

Abstract Image

通过遗传性癌症患者基因组评估目标自适应采样长读数测序的功效。
测序技术的创新导致了导致遗传性疾病的新型突变的发现。然而,许多疑似遗传病患者仍未得到诊断。长读数测序技术克服了短读数测序的局限性,有望显著提高诊断率。此外,牛津纳米孔技术公司(ONT)提供自适应采样和计算驱动的目标富集技术。与标准的非选择性长读程测序技术相比,该技术能对目标基因区域进行更经济实惠的强化分析。在这项研究中,我们为目标自适应采样长读程测序(TAS-LRS)开发了一种高效的计算工作流程,并通过应用从疑似遗传性癌症患者身上收集的 33 个基因组对其进行了评估。我们的工作流程可以识别单核苷酸变异,准确率几乎与短读平台相同,并能阐明结构变异的复杂形式。我们还在两名家族性腺瘤性息肉病患者的基因组中新发现了影响 APC 基因的几个 SINE-R/VNTR/Alu (SVA) 元件及其起源位点。此外,我们还证明了通常会被丢弃的自适应采样的非目标读数可以有效地用于对整个基因组中常见的单核苷酸多态性(SNP)进行准确的基因分型,从而计算出多基因风险评分。此外,我们还在一名林奇综合征患者体内发现了等位基因特异性 MLH1 启动子高甲基化。总之,我们利用 TAS-LRS 的工作流程可以同时捕获包括复杂结构变异在内的单基因风险变异、多基因背景以及表观遗传学改变,将成为遗传疾病研究和诊断的高效平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Genomic Medicine
NPJ Genomic Medicine Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍: npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine. The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信