Cu-Doped Sb2Se3 Thin-Film Solar Cells Based on Hybrid Pulsed Electron Deposition/Radio Frequency Magnetron Sputtering Growth Techniques

Solar Pub Date : 2024-02-04 DOI:10.3390/solar4010004
Roberto Jakomin, S. Rampino, G. Spaggiari, Michele Casappa, Giovanna Trevisi, Elena Del Canale, Enos Gombia, M. Bronzoni, Kodjo Kekeli Sossoe, Francesco Mezzadri, F. Pattini
{"title":"Cu-Doped Sb2Se3 Thin-Film Solar Cells Based on Hybrid Pulsed Electron Deposition/Radio Frequency Magnetron Sputtering Growth Techniques","authors":"Roberto Jakomin, S. Rampino, G. Spaggiari, Michele Casappa, Giovanna Trevisi, Elena Del Canale, Enos Gombia, M. Bronzoni, Kodjo Kekeli Sossoe, Francesco Mezzadri, F. Pattini","doi":"10.3390/solar4010004","DOIUrl":null,"url":null,"abstract":"In recent years, research attention has increasingly focused on thin-film photovoltaics utilizing Sb2Se3 as an ideal absorber layer. This compound is favored due to its abundance, non-toxic nature, long-term stability, and the potential to employ various cost-effective and scalable vapor deposition (PVD) routes. On the other hand, improving passivation, surface treatment and p-type carrier concentration is essential for developing high-performance and commercially viable Sb2Se3 solar cells. In this study, Cu-doped Sb2Se3 solar devices were fabricated using two distinct PVD techniques, pulsed electron deposition (PED) and radio frequency magnetron sputtering (RFMS). Furthermore, 5%Cu:Sb2Se3 films grown via PED exhibited high open-circuit voltages (VOC) of around 400 mV but very low short-circuit current densities (JSC). Conversely, RFMS-grown Sb2Se3 films resulted in low VOC values of around 300 mV and higher JSC. To enhance the photocurrent, we employed strategies involving a thin NaF layer to introduce controlled local doping at the back interface and a bilayer p-doped region grown sequentially using PED and RFMS. The optimized Sb2Se3 bilayer solar cell achieved a maximum efficiency of 5.25%.","PeriodicalId":517023,"journal":{"name":"Solar","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/solar4010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, research attention has increasingly focused on thin-film photovoltaics utilizing Sb2Se3 as an ideal absorber layer. This compound is favored due to its abundance, non-toxic nature, long-term stability, and the potential to employ various cost-effective and scalable vapor deposition (PVD) routes. On the other hand, improving passivation, surface treatment and p-type carrier concentration is essential for developing high-performance and commercially viable Sb2Se3 solar cells. In this study, Cu-doped Sb2Se3 solar devices were fabricated using two distinct PVD techniques, pulsed electron deposition (PED) and radio frequency magnetron sputtering (RFMS). Furthermore, 5%Cu:Sb2Se3 films grown via PED exhibited high open-circuit voltages (VOC) of around 400 mV but very low short-circuit current densities (JSC). Conversely, RFMS-grown Sb2Se3 films resulted in low VOC values of around 300 mV and higher JSC. To enhance the photocurrent, we employed strategies involving a thin NaF layer to introduce controlled local doping at the back interface and a bilayer p-doped region grown sequentially using PED and RFMS. The optimized Sb2Se3 bilayer solar cell achieved a maximum efficiency of 5.25%.
基于混合脉冲电子沉积/射频磁控溅射生长技术的掺铜 Sb2Se3 薄膜太阳能电池
近年来,研究人员越来越关注利用 Sb2Se3 作为理想吸收层的薄膜光伏技术。这种化合物因其丰富、无毒、长期稳定,以及可采用各种具有成本效益和可扩展的气相沉积(PVD)工艺而备受青睐。另一方面,改善钝化、表面处理和 p 型载流子浓度对于开发高性能和商业化的 Sb2Se3 太阳能电池至关重要。本研究采用脉冲电子沉积(PED)和射频磁控溅射(RFMS)两种不同的 PVD 技术制造了掺铜的 Sb2Se3 太阳能器件。此外,通过 PED 技术生长的 5%Cu:Sb2Se3 薄膜具有约 400 mV 的高开路电压 (VOC),但短路电流密度 (JSC) 却非常低。相反,RFMS 生长的 Sb2Se3 薄膜则具有约 300 mV 的低 VOC 值和较高的 JSC。为了提高光电流,我们采用了一些策略,其中包括在背面界面引入薄 NaF 层以控制局部掺杂,以及使用 PED 和 RFMS 顺序生长双层 p 掺杂区。优化后的 Sb2Se3 双层太阳能电池的最高效率达到了 5.25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信