{"title":"Luteolin ameliorates pentetrazole-induced seizures through the inhibition of the TLR4/NF-κB signaling pathway","authors":"Yahong Cheng , Yiyuan Zhang , Puxin Huang , Qingzhou Cheng , Hong Ding","doi":"10.1016/j.eplepsyres.2024.107321","DOIUrl":null,"url":null,"abstract":"<div><p>Epilepsy represents a prevalent neurological disorder in the population, and the existing antiepileptic drugs (AEDs) often fail to adequately control seizures. Inflammation is recognized as a pivotal factor in the pathophysiology of epilepsy. Luteolin, a natural flavonoid extract, possesses anti-inflammatory properties and exhibits promising neuroprotective activity. Nevertheless, the precise molecular mechanisms underlying the antiepileptic effects of luteolin remain elusive. In this study, we established a rat model of epilepsy using pentylenetetrazole (PTZ) to induce seizures. A series of behavioral experiments were conducted to assess behavioral abilities and cognitive function. Histological techniques, including HE staining, Nissl staining, and TUNEL staining, were employed to assess hippocampal neuronal damage. Additionally, Western blotting, RT-qPCR, and ELISA were utilized to analyze the expression levels of proteins involved in the TLR4/IκBα/NF-κB signaling pathway, transcription levels of apoptotic factors, and levels of inflammatory cytokines, respectively. Luteolin exhibited a dose-dependent reduction in seizure severity, prolonged the latency period of seizures, and shortened seizure duration. Furthermore, luteolin prevented hippocampal neuronal damage in PTZ-induced epileptic rats and partially restored behavioral function and learning and memory abilities. Lastly, PTZ kindling activated the TLR4/IκBα/NF-κB pathway, leading to elevated levels of the cytokines TNF-α, IL-6 and IL-1β, which were attenuated by luteolin. Luteolin exerted anticonvulsant and neuroprotective activities in the PTZ-induced epileptic model. Its mechanism was associated with the inhibition of the TLR4/IκBα/NF-κB pathway, alleviating the immune-inflammatory response in the post-epileptic hippocampus.</p></div>","PeriodicalId":11914,"journal":{"name":"Epilepsy Research","volume":"201 ","pages":"Article 107321"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsy Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920121124000366","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epilepsy represents a prevalent neurological disorder in the population, and the existing antiepileptic drugs (AEDs) often fail to adequately control seizures. Inflammation is recognized as a pivotal factor in the pathophysiology of epilepsy. Luteolin, a natural flavonoid extract, possesses anti-inflammatory properties and exhibits promising neuroprotective activity. Nevertheless, the precise molecular mechanisms underlying the antiepileptic effects of luteolin remain elusive. In this study, we established a rat model of epilepsy using pentylenetetrazole (PTZ) to induce seizures. A series of behavioral experiments were conducted to assess behavioral abilities and cognitive function. Histological techniques, including HE staining, Nissl staining, and TUNEL staining, were employed to assess hippocampal neuronal damage. Additionally, Western blotting, RT-qPCR, and ELISA were utilized to analyze the expression levels of proteins involved in the TLR4/IκBα/NF-κB signaling pathway, transcription levels of apoptotic factors, and levels of inflammatory cytokines, respectively. Luteolin exhibited a dose-dependent reduction in seizure severity, prolonged the latency period of seizures, and shortened seizure duration. Furthermore, luteolin prevented hippocampal neuronal damage in PTZ-induced epileptic rats and partially restored behavioral function and learning and memory abilities. Lastly, PTZ kindling activated the TLR4/IκBα/NF-κB pathway, leading to elevated levels of the cytokines TNF-α, IL-6 and IL-1β, which were attenuated by luteolin. Luteolin exerted anticonvulsant and neuroprotective activities in the PTZ-induced epileptic model. Its mechanism was associated with the inhibition of the TLR4/IκBα/NF-κB pathway, alleviating the immune-inflammatory response in the post-epileptic hippocampus.
期刊介绍:
Epilepsy Research provides for publication of high quality articles in both basic and clinical epilepsy research, with a special emphasis on translational research that ultimately relates to epilepsy as a human condition. The journal is intended to provide a forum for reporting the best and most rigorous epilepsy research from all disciplines ranging from biophysics and molecular biology to epidemiological and psychosocial research. As such the journal will publish original papers relevant to epilepsy from any scientific discipline and also studies of a multidisciplinary nature. Clinical and experimental research papers adopting fresh conceptual approaches to the study of epilepsy and its treatment are encouraged. The overriding criteria for publication are novelty, significant clinical or experimental relevance, and interest to a multidisciplinary audience in the broad arena of epilepsy. Review articles focused on any topic of epilepsy research will also be considered, but only if they present an exceptionally clear synthesis of current knowledge and future directions of a research area, based on a critical assessment of the available data or on hypotheses that are likely to stimulate more critical thinking and further advances in an area of epilepsy research.