Classification analysis of prediction skill among ensemble members in MJO subseasonal predictions—based on the results of the CAMS-CSM subseasonal prediction system

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Yihao Peng , Xiaolei Liu , Jingzhi Su , Xinli Liu
{"title":"Classification analysis of prediction skill among ensemble members in MJO subseasonal predictions—based on the results of the CAMS-CSM subseasonal prediction system","authors":"Yihao Peng ,&nbsp;Xiaolei Liu ,&nbsp;Jingzhi Su ,&nbsp;Xinli Liu","doi":"10.1016/j.aosl.2024.100469","DOIUrl":null,"url":null,"abstract":"<div><p>Given the inherent imperfections in models and the inevitability of initial condition errors, subseasonal prediction ability faces ongoing limitations. Most international numerical models employ ensemble forecasts to enhance the accuracy of subseasonal prediction. The prediction skill for the Madden–Julian Oscillation (MJO), as a vital source of subseasonal predictability, depends on both model performance and the physical nature of the events. Based on the reforecast results of the CAMS-CSM subseasonal prediction system, the differences in MJO prediction skill among ensemble members are classified and compared together with the characteristics of different kinds of MJO events. In the category with generally high ensemble member prediction skill, MJO events often have extended durations, stronger intensities, and the intense convection primarily locates in the Indian Ocean, gradually shifting eastward to the western Pacific. In the category with mostly poor ensemble member prediction skill, the convection strength during MJO event propagation is weakest. In the category with mixed prediction skill among ensemble members, MJO events tend to have shorter durations and lower intensities, and the convection centers during subsequent propagation exhibit stationary characteristics over Maritime Continent regions.</p><p>摘要</p><p>由于模式误差和初始误差所致, 次季节-季节预报技巧整体偏低. 国际上多数模式都采用集合预报的方式来提高次季节预报的准确率. 热带大气季节内振荡 (MJO) 作为次季节尺度可预报性的重要来源, 其预测水平取决于模式性能和MJO事件本身的物理特性. 根据中国气象科学研究院气候系统模式次季节预测系统的回报结果, 结合不同类型MJO事件的特征, 对模式集合成员间的预报技巧进行了分类和比较. 在集合成员预报技巧普遍较高的一类MJO事件中, 对流异常信号持续时间较长, 强度较大, 强对流异常中心主要位于印度洋区域, 并逐渐东传至西太平洋. 在集合成员预报技巧多数较差的MJO事件中, 对流异常信号的强度最弱, 维持时间最短. 在集合成员预报技巧优劣参半的类别中, MJO往往持续时间较短, 强度较低, 在后续传播过程中, 对流异常中心多停驻在海洋性大陆区域.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 4","pages":"Article 100469"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674283424000175/pdfft?md5=483bb668c6e4bd58436242c49ba89d74&pid=1-s2.0-S1674283424000175-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283424000175","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Given the inherent imperfections in models and the inevitability of initial condition errors, subseasonal prediction ability faces ongoing limitations. Most international numerical models employ ensemble forecasts to enhance the accuracy of subseasonal prediction. The prediction skill for the Madden–Julian Oscillation (MJO), as a vital source of subseasonal predictability, depends on both model performance and the physical nature of the events. Based on the reforecast results of the CAMS-CSM subseasonal prediction system, the differences in MJO prediction skill among ensemble members are classified and compared together with the characteristics of different kinds of MJO events. In the category with generally high ensemble member prediction skill, MJO events often have extended durations, stronger intensities, and the intense convection primarily locates in the Indian Ocean, gradually shifting eastward to the western Pacific. In the category with mostly poor ensemble member prediction skill, the convection strength during MJO event propagation is weakest. In the category with mixed prediction skill among ensemble members, MJO events tend to have shorter durations and lower intensities, and the convection centers during subsequent propagation exhibit stationary characteristics over Maritime Continent regions.

摘要

由于模式误差和初始误差所致, 次季节-季节预报技巧整体偏低. 国际上多数模式都采用集合预报的方式来提高次季节预报的准确率. 热带大气季节内振荡 (MJO) 作为次季节尺度可预报性的重要来源, 其预测水平取决于模式性能和MJO事件本身的物理特性. 根据中国气象科学研究院气候系统模式次季节预测系统的回报结果, 结合不同类型MJO事件的特征, 对模式集合成员间的预报技巧进行了分类和比较. 在集合成员预报技巧普遍较高的一类MJO事件中, 对流异常信号持续时间较长, 强度较大, 强对流异常中心主要位于印度洋区域, 并逐渐东传至西太平洋. 在集合成员预报技巧多数较差的MJO事件中, 对流异常信号的强度最弱, 维持时间最短. 在集合成员预报技巧优劣参半的类别中, MJO往往持续时间较短, 强度较低, 在后续传播过程中, 对流异常中心多停驻在海洋性大陆区域.

Abstract Image

基于 CAMS-CSM 副季节预报系统结果的 MJO 副季节预报中各集合成员预报技能的分类分析
由于模式本身的不完善和初始条件误差的不可避免性,副季节预报能力一直面临着限制。国际上大多数数值模式都采用集合预报来提高副季节预报的精度。马登-朱利安涛动(MJO)作为副季节预测能力的重要来源,其预测能力取决于模式性能和事件的物理特性。根据 CAMS-CSM 副季节预报系统的再预报结果,结合不同类型 MJO 事件的特征,对集合成员间 MJO 预报技能的差异进行了分类和比较。在集合成员预测技能普遍较高的类别中,MJO 事件通常持续时间较长,强度较强,强对流主要位于印度洋,并逐渐向东转移到西太平洋。在集合成员预测技能大多较差的类别中,MJO 事件传播过程中的对流强度最弱。在集合成员预测技能参差不齐的类别中,MJO 事件往往持续时间较短,强度较低,在随后的传播过程中,对流中心在海洋大陆地区表现出静止特征。摘要由于模式误差和初始误差所致,次季节-季节预报技巧整体偏低。国际上多数模式都采用集合预报的方式来提高次季节预报的准确率。热带大气季节内振荡 (mjo) 作为次季节尺度可预报性的重要来源,其预测水平取决于模式性能和 mjo 事件本身的物理特性。根据中国气象科学研究院气候系统模式次季节预测系统的回报结果, 结合不同类型 mjo 事件的特征, 对模式集合成员间的预报技巧进行了分类和比较。在集合成员间的预报技巧普遍较高的一类 mjo 事件中, 对流异常信号持续时间较长, 强度较大, 强对流异常中心主要位于印度洋区域, 并逐渐东传至西太平洋.在集合成员预报技巧多数较差的 mjo 事件中, 对流异常信号的强度最弱, 维持时间最短。在集合成员预报技巧优劣参半的类别中, mjo往往持续时间较短, 强度较低, 在后续传播过程中, 对流异常中心多停驻在海洋性大陆区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信