A big data driven vegetation disease and pest region identification method based on self supervised convolutional neural networks and parallel extreme learning machines
IF 4.3 3区 材料科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"A big data driven vegetation disease and pest region identification method based on self supervised convolutional neural networks and parallel extreme learning machines","authors":"Bo Jiang , Hao Wang , Hanxu Ma","doi":"10.1016/j.bdr.2024.100444","DOIUrl":null,"url":null,"abstract":"<div><p>A self supervised convolutional neural network-parallel extreme learning machine classification model based on big data is proposed to address the subjectivity and inaccuracy of traditional methods for identifying vegetation pests and diseases that rely on manual observation and empirical judgment. This model is constructed using convolutional neural networks and parallel extreme learning machines, and integrates feature extraction networks with dual attention mechanisms to improve the accuracy of identifying pests and diseases. The model utilized a large amount of big data for training, achieving a recall rate of 98.42 % on multispectral datasets, and an overall classification accuracy of 99.04 %. After optimizing the residual network, the overall accuracy of identifying vegetation pest and disease areas has been further improved to 99.77 %, and the recall rate has also reached 98.91 %. These results indicate that the method proposed in this study has high accuracy and efficiency in the application of big data, can meet the needs of disease and pest identification, and provides effective technical support for the monitoring and prevention of crop diseases and pests, which has important practical significance.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000200","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A self supervised convolutional neural network-parallel extreme learning machine classification model based on big data is proposed to address the subjectivity and inaccuracy of traditional methods for identifying vegetation pests and diseases that rely on manual observation and empirical judgment. This model is constructed using convolutional neural networks and parallel extreme learning machines, and integrates feature extraction networks with dual attention mechanisms to improve the accuracy of identifying pests and diseases. The model utilized a large amount of big data for training, achieving a recall rate of 98.42 % on multispectral datasets, and an overall classification accuracy of 99.04 %. After optimizing the residual network, the overall accuracy of identifying vegetation pest and disease areas has been further improved to 99.77 %, and the recall rate has also reached 98.91 %. These results indicate that the method proposed in this study has high accuracy and efficiency in the application of big data, can meet the needs of disease and pest identification, and provides effective technical support for the monitoring and prevention of crop diseases and pests, which has important practical significance.