{"title":"Neural signaling in neuropathic pain: A computational modeling perspective","authors":"Xinyue Ma , Anmar Khadra","doi":"10.1016/j.coisb.2024.100509","DOIUrl":null,"url":null,"abstract":"<div><p>Neuropathic pain is a complex condition with a huge unmet medical need. Owing to our incomplete understanding of its perplexing pathology, current therapeutic strategies for treating neuropathic pain remain limited in their efficacy. Computational modeling has emerged as a promising methodology in unraveling the intricate neural mechanisms contributing to neuropathic pain. This review serves as a bridge that links traditional experimental research in neuropathic pain to computational neuroscience. We aim to fill in the gap of knowledge between these two fields by introducing the methodology of computational modeling as well as the neurophysiological background for neuropathic pain. We provide examples of recent advances in using computational modeling at the molecular, cellular, and neural network levels to harness the understanding of pain-associated neural signaling. This integration of computational modeling has yielded crucial insights into neuropathic pain pathophysiology, with great potential to inform novel pharmacological and neurostimulation-based treatments for the disease.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310024000052/pdfft?md5=d4c0bbd6bb1f98e6ca3144aab1540c86&pid=1-s2.0-S2452310024000052-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310024000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuropathic pain is a complex condition with a huge unmet medical need. Owing to our incomplete understanding of its perplexing pathology, current therapeutic strategies for treating neuropathic pain remain limited in their efficacy. Computational modeling has emerged as a promising methodology in unraveling the intricate neural mechanisms contributing to neuropathic pain. This review serves as a bridge that links traditional experimental research in neuropathic pain to computational neuroscience. We aim to fill in the gap of knowledge between these two fields by introducing the methodology of computational modeling as well as the neurophysiological background for neuropathic pain. We provide examples of recent advances in using computational modeling at the molecular, cellular, and neural network levels to harness the understanding of pain-associated neural signaling. This integration of computational modeling has yielded crucial insights into neuropathic pain pathophysiology, with great potential to inform novel pharmacological and neurostimulation-based treatments for the disease.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution