{"title":"Big data-driven water research towards metaverse","authors":"Minori Uchimiya","doi":"10.1016/j.wse.2024.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Although big data is publicly available on water quality parameters, virtual simulation has not yet been adequately adapted in environmental chemistry research. Digital twin is different from conventional geospatial modeling approaches and is particularly useful when systematic laboratory/field experiment is not realistic (e.g., climate impact and water-related environmental catastrophe) or difficult to design and monitor in a real time (e.g., pollutant and nutrient cycles in estuaries, soils, and sediments). Data-driven water research could realize early warning and disaster readiness simulations for diverse environmental scenarios, including drinking water contamination.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 2","pages":"Pages 101-107"},"PeriodicalIF":3.7000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237024000231/pdfft?md5=f7ae9790a7e619b1139af1bd7ae60eda&pid=1-s2.0-S1674237024000231-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237024000231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Although big data is publicly available on water quality parameters, virtual simulation has not yet been adequately adapted in environmental chemistry research. Digital twin is different from conventional geospatial modeling approaches and is particularly useful when systematic laboratory/field experiment is not realistic (e.g., climate impact and water-related environmental catastrophe) or difficult to design and monitor in a real time (e.g., pollutant and nutrient cycles in estuaries, soils, and sediments). Data-driven water research could realize early warning and disaster readiness simulations for diverse environmental scenarios, including drinking water contamination.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.