Overview of emerging semiconductor device model methodologies: From device physics to machine learning engines

IF 6.3 3区 综合性期刊 Q1 Multidisciplinary
Xufan Li , Zhenhua Wu , Gerhard Rzepa , Markus Karner , Haoqing Xu , Zhicheng Wu , Wei Wang , Guanhua Yang , Qing Luo , Lingfei Wang , Ling Li
{"title":"Overview of emerging semiconductor device model methodologies: From device physics to machine learning engines","authors":"Xufan Li ,&nbsp;Zhenhua Wu ,&nbsp;Gerhard Rzepa ,&nbsp;Markus Karner ,&nbsp;Haoqing Xu ,&nbsp;Zhicheng Wu ,&nbsp;Wei Wang ,&nbsp;Guanhua Yang ,&nbsp;Qing Luo ,&nbsp;Lingfei Wang ,&nbsp;Ling Li","doi":"10.1016/j.fmre.2024.01.010","DOIUrl":null,"url":null,"abstract":"<div><div>Advancements in the semiconductor industry introduce novel channel materials, device structures, and integration methods, leading to intricate physics challenges when characterizing devices at circuit level. Nevertheless, accurate models for emerging devices are crucial for physics-driven TCAD-to-SPICE flows to enable the increasingly vital design technology co-optimization (DTCO). Particularly for ultra-scaled devices where quantum effects become significant, this led to the introduction of empirical model parameters and a disconnection to manufacturing processes. To catch up with these developments, an alternative to the traditional <em>white-box</em> modeling methods has attracted much attention: machine learning-assisted compact modeling (MLCM). These <em>black-box</em> methods target towards general-purpose modeling of complex mathematics and physics through training of neural networks on experimental and simulated data, generating an accurate closed-form mapping between output characteristics and input parameters for fabrication process and device operation. To address this new trend, this work provides a comprehensive overview of emerging device model methodologies, spanning from device physics to machine learning engines. By analyzing, structuring, and extending distributed efforts on this topic, it is shown how MLCM can overcome limitations of traditional compact modeling and contribute to effective DTCO to further advance semiconductor technologies.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"5 5","pages":"Pages 2149-2160"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325824000323","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in the semiconductor industry introduce novel channel materials, device structures, and integration methods, leading to intricate physics challenges when characterizing devices at circuit level. Nevertheless, accurate models for emerging devices are crucial for physics-driven TCAD-to-SPICE flows to enable the increasingly vital design technology co-optimization (DTCO). Particularly for ultra-scaled devices where quantum effects become significant, this led to the introduction of empirical model parameters and a disconnection to manufacturing processes. To catch up with these developments, an alternative to the traditional white-box modeling methods has attracted much attention: machine learning-assisted compact modeling (MLCM). These black-box methods target towards general-purpose modeling of complex mathematics and physics through training of neural networks on experimental and simulated data, generating an accurate closed-form mapping between output characteristics and input parameters for fabrication process and device operation. To address this new trend, this work provides a comprehensive overview of emerging device model methodologies, spanning from device physics to machine learning engines. By analyzing, structuring, and extending distributed efforts on this topic, it is shown how MLCM can overcome limitations of traditional compact modeling and contribute to effective DTCO to further advance semiconductor technologies.
新兴半导体器件模型方法概述:从器件物理到机器学习引擎
半导体行业的进步引入了新的通道材料、器件结构和集成方法,在电路级表征器件时带来了复杂的物理挑战。然而,新兴器件的精确模型对于物理驱动的TCAD-to-SPICE流程至关重要,以实现日益重要的设计技术协同优化(DTCO)。特别是对于量子效应变得重要的超大规模设备,这导致了经验模型参数的引入和制造过程的中断。为了跟上这些发展,一种替代传统白盒建模方法的方法引起了人们的广泛关注:机器学习辅助紧凑建模(MLCM)。这些黑盒方法的目标是通过在实验和模拟数据上训练神经网络来实现复杂数学和物理的通用建模,在制造过程和设备操作的输出特性和输入参数之间生成精确的封闭形式映射。为了解决这一新趋势,这项工作提供了新兴设备模型方法的全面概述,从设备物理到机器学习引擎。通过对该主题的分析,构建和扩展分布式工作,展示了MLCM如何克服传统紧凑建模的局限性,并有助于有效的DTCO进一步推进半导体技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信