Deborah A. Lin , Beatriz Abdo Abujamra , Stephanie Revah , Leigh Nattkemper , Brian Morrison , Paolo Romanelli , Ivan Jozic
{"title":"Downregulation of Caveolae-Associated Proteins in Psoriasis: A Case Series Study","authors":"Deborah A. Lin , Beatriz Abdo Abujamra , Stephanie Revah , Leigh Nattkemper , Brian Morrison , Paolo Romanelli , Ivan Jozic","doi":"10.1016/j.xjidi.2024.100265","DOIUrl":null,"url":null,"abstract":"<div><p>We have previously identified that a structural membrane protein Caveolin-1 (Cav1) is involved in the regulation of aberrant keratinocyte proliferation and differentiation. The aim of this study was to elucidate the role of Cav1, Caveolin-2 (Cav2), and Cavin-1 in the pathogenesis of psoriasis vulgaris and between psoriasis subtypes. We utilized human biopsies from validated cases of psoriasis vulgaris (n = 21) at the University of Miami Hospital and compared the expression of Cav1, Cav2, and Cavin-1 by immunohistochemistry staining with that in normal healthy age-/sex-/location-matched skin (n = 15) and chronic spongiotic dermatitis skin samples (as control inflammatory skin condition) and quantified using QuPath. Distinct subtypes of psoriasis included guttate, inverse, nail, plaque, palmoplantar, and pustular. All biopsy samples exhibited a trend toward downregulation of Cav1, with nail, plaque, and palmoplantar psoriasis exhibiting the most pronounced effects. Only nail and pustular psoriasis samples exhibited significant downregulation of Cav2 and Cavin-1, suggesting Cav1 to be the main caveolar contributor to the pathogenesis of psoriasis. Together, these data support caveolae as pathophysiological targets in nail and pustular psoriasis, whereas Cav1 seems to be a general biomarker of multiple subtypes of psoriasis.</p></div>","PeriodicalId":73548,"journal":{"name":"JID innovations : skin science from molecules to population health","volume":"4 2","pages":"Article 100265"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667026724000110/pdfft?md5=9f2e78ab69fefc00700771ebaf34c34b&pid=1-s2.0-S2667026724000110-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JID innovations : skin science from molecules to population health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667026724000110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We have previously identified that a structural membrane protein Caveolin-1 (Cav1) is involved in the regulation of aberrant keratinocyte proliferation and differentiation. The aim of this study was to elucidate the role of Cav1, Caveolin-2 (Cav2), and Cavin-1 in the pathogenesis of psoriasis vulgaris and between psoriasis subtypes. We utilized human biopsies from validated cases of psoriasis vulgaris (n = 21) at the University of Miami Hospital and compared the expression of Cav1, Cav2, and Cavin-1 by immunohistochemistry staining with that in normal healthy age-/sex-/location-matched skin (n = 15) and chronic spongiotic dermatitis skin samples (as control inflammatory skin condition) and quantified using QuPath. Distinct subtypes of psoriasis included guttate, inverse, nail, plaque, palmoplantar, and pustular. All biopsy samples exhibited a trend toward downregulation of Cav1, with nail, plaque, and palmoplantar psoriasis exhibiting the most pronounced effects. Only nail and pustular psoriasis samples exhibited significant downregulation of Cav2 and Cavin-1, suggesting Cav1 to be the main caveolar contributor to the pathogenesis of psoriasis. Together, these data support caveolae as pathophysiological targets in nail and pustular psoriasis, whereas Cav1 seems to be a general biomarker of multiple subtypes of psoriasis.