Ana L. González-Cota , Daniel Martínez-Flores , Margarita Jacaranda Rosendo-Pineda , Luis Vaca
{"title":"NMDA receptor-mediated Ca2+ signaling: Impact on cell cycle regulation and the development of neurodegenerative diseases and cancer","authors":"Ana L. González-Cota , Daniel Martínez-Flores , Margarita Jacaranda Rosendo-Pineda , Luis Vaca","doi":"10.1016/j.ceca.2024.102856","DOIUrl":null,"url":null,"abstract":"<div><p>NMDA receptors are Ca<sup>2+</sup>-permeable ligand-gated ion channels that mediate fast excitatory transmission in the central nervous system. NMDA receptors regulate the proliferation and differentiation of neural progenitor cells and also play critical roles in neural plasticity, memory, and learning. In addition to their physiological role, NMDA receptors are also involved in glutamate-mediated excitotoxicity, which results from excessive glutamate stimulation, leading to Ca<sup>2+</sup> overload, and ultimately to neuronal death. Thus, NMDA receptor-mediated excitotoxicity has been linked to several neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, dementia, and stroke. Interestingly, in addition to its effects on cell death, aberrant expression or activation of NMDA receptors is also involved in pathological cellular proliferation, and is implicated in the invasion and proliferation of various types of cancer. These disorders are thought to be related to the contribution of NMDA receptors to cell proliferation and cell death through cell cycle modulation. This review aims to discuss the evidence implicating NMDA receptor activity in cell cycle regulation and the link between aberrant NMDA receptor activity and the development of neurodegenerative diseases and cancer due to cell cycle dysregulation. The information presented here will provide insights into the signaling pathways and the contribution of NMDA receptors to these diseases, and suggests that NMDA receptors are promising targets for the prevention and treatment of these diseases, which are leading causes of death and disability worldwide.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"119 ","pages":"Article 102856"},"PeriodicalIF":4.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143416024000149","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
NMDA receptors are Ca2+-permeable ligand-gated ion channels that mediate fast excitatory transmission in the central nervous system. NMDA receptors regulate the proliferation and differentiation of neural progenitor cells and also play critical roles in neural plasticity, memory, and learning. In addition to their physiological role, NMDA receptors are also involved in glutamate-mediated excitotoxicity, which results from excessive glutamate stimulation, leading to Ca2+ overload, and ultimately to neuronal death. Thus, NMDA receptor-mediated excitotoxicity has been linked to several neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, dementia, and stroke. Interestingly, in addition to its effects on cell death, aberrant expression or activation of NMDA receptors is also involved in pathological cellular proliferation, and is implicated in the invasion and proliferation of various types of cancer. These disorders are thought to be related to the contribution of NMDA receptors to cell proliferation and cell death through cell cycle modulation. This review aims to discuss the evidence implicating NMDA receptor activity in cell cycle regulation and the link between aberrant NMDA receptor activity and the development of neurodegenerative diseases and cancer due to cell cycle dysregulation. The information presented here will provide insights into the signaling pathways and the contribution of NMDA receptors to these diseases, and suggests that NMDA receptors are promising targets for the prevention and treatment of these diseases, which are leading causes of death and disability worldwide.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes