{"title":"Reliability ensemble averaging reduces surface wind speed projection uncertainties in the 21st century over China","authors":"Zheng-Tai Zhang, Chang-Ai Xu","doi":"10.1016/j.accre.2024.01.011","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate prediction of future surface wind speed (SWS) changes is the basis of scientific planning for wind turbines. Most studies have projected SWS changes in the 21st century over China on the basis of the multi-model ensemble (MME) of the 6th Coupled Model Intercomparison Project (CMIP6). However, the simulation capability for SWS varies greatly in CMIP6 multi-models, so the MME results still have large uncertainties. In this study, we used the reliability ensemble averaging (REA) method to assign each model different weights according to their performances in simulating historical SWS changes and project the SWS under different shared socioeconomic pathways (SSPs) in 2015–2099. The results indicate that REA considerably improves the SWS simulation capacity of CMIP6, eliminating the overestimation of SWS by the MME and increasing the simulation capacity of spatial distribution. The spatial correlations with observations increased from 0.56 for the MME to 0.85 for REA. Generally, REA could eliminate the overestimation of the SWS by 33% in 2015–2099. Except for southeastern China, the SWS generally decreases over China in the near term (2020–2049) and later term (2070–2099), particularly under high-emission scenarios. The SWS reduction projected by REA is twice as high as that by the MME in the near term, reaching −4% to −3%. REA predicts a larger area of increased SWS in the later term, which expands from southeastern China to eastern China. This study helps to reduce the projected SWS uncertainties.</p></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 2","pages":"Pages 222-229"},"PeriodicalIF":6.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674927824000236/pdfft?md5=4fa9b74d9b1dcb2cf6770ce75cb6ae2a&pid=1-s2.0-S1674927824000236-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927824000236","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of future surface wind speed (SWS) changes is the basis of scientific planning for wind turbines. Most studies have projected SWS changes in the 21st century over China on the basis of the multi-model ensemble (MME) of the 6th Coupled Model Intercomparison Project (CMIP6). However, the simulation capability for SWS varies greatly in CMIP6 multi-models, so the MME results still have large uncertainties. In this study, we used the reliability ensemble averaging (REA) method to assign each model different weights according to their performances in simulating historical SWS changes and project the SWS under different shared socioeconomic pathways (SSPs) in 2015–2099. The results indicate that REA considerably improves the SWS simulation capacity of CMIP6, eliminating the overestimation of SWS by the MME and increasing the simulation capacity of spatial distribution. The spatial correlations with observations increased from 0.56 for the MME to 0.85 for REA. Generally, REA could eliminate the overestimation of the SWS by 33% in 2015–2099. Except for southeastern China, the SWS generally decreases over China in the near term (2020–2049) and later term (2070–2099), particularly under high-emission scenarios. The SWS reduction projected by REA is twice as high as that by the MME in the near term, reaching −4% to −3%. REA predicts a larger area of increased SWS in the later term, which expands from southeastern China to eastern China. This study helps to reduce the projected SWS uncertainties.
期刊介绍:
Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change.
Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.