{"title":"Implementation and optimization of perturbation currents for vehicular proton exchange membrane fuel cells online electrochemical impedance spectroscopy measurements","authors":"Xiaojie Zhang, Tong Zhang, Huicui Chen","doi":"10.1002/fuce.202300114","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an implementation method of perturbation currents for vehicular proton exchange membrane fuel cell (PEMFC) online electrochemical impedance spectroscopy (EIS) measurements. The topology of the parallel dual-boost DC/DC converter system for the EIS measurement is presented. The DC<sub>dc</sub> and DC<sub>ac</sub> modules in the converter system implement the DC current and the sinusoidal EIS perturbation current independently. Simulation results show that the proposed perturbation current generation method can be implemented efficiently. In the frequency domain, the current of DC<sub>dc</sub> couples to the perturbation current of DC<sub>ac</sub>, leading to a reduction in the accuracy of the current amplitude after superposition. The mechanism of current amplitude reduction after superposition is discussed. Feed-forward compensation and fuzzy compensation optimization are proposed for the DC<sub>dc</sub> current control. Both compensation algorithms achieve excellent results. A comprehensive framework for evaluating the compensation effect is presented. The evaluation results show that feed-forward compensation has a better advantage in solving the above problems due to its simplicity and less impact on hardware control. Experimental results show that with the optimization algorithm, the input perturbation current increases from 6% to 83% of the theoretical value.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202300114","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an implementation method of perturbation currents for vehicular proton exchange membrane fuel cell (PEMFC) online electrochemical impedance spectroscopy (EIS) measurements. The topology of the parallel dual-boost DC/DC converter system for the EIS measurement is presented. The DCdc and DCac modules in the converter system implement the DC current and the sinusoidal EIS perturbation current independently. Simulation results show that the proposed perturbation current generation method can be implemented efficiently. In the frequency domain, the current of DCdc couples to the perturbation current of DCac, leading to a reduction in the accuracy of the current amplitude after superposition. The mechanism of current amplitude reduction after superposition is discussed. Feed-forward compensation and fuzzy compensation optimization are proposed for the DCdc current control. Both compensation algorithms achieve excellent results. A comprehensive framework for evaluating the compensation effect is presented. The evaluation results show that feed-forward compensation has a better advantage in solving the above problems due to its simplicity and less impact on hardware control. Experimental results show that with the optimization algorithm, the input perturbation current increases from 6% to 83% of the theoretical value.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.