{"title":"Exploration of multimodal alarms for civil aircraft flying task: A laboratory study","authors":"Wenzhe Cun, Suihuai Yu, Jianjie Chu, Yanhao Chen, Jianhua Sun, Hao Fan","doi":"10.1002/hfm.21026","DOIUrl":null,"url":null,"abstract":"<p>Owing to the increasing amount of information presented in the cockpit, the visual and hearing channels are unable to adequately transmit information, which may increase the mental load on pilots. This study explores the benefits of multimodal alarms under high and low residual capacities during take-off in civil aircrafts in a quasi-experimental study. The performance of two modes of multimodal (visual and auditory [VA], and visual, auditory, and tactile [VAT]) alarms were tested. The results showed that the VAT alarms were superior to the VA alarms in terms of choice response times (CRTs) when the participants were exposed to low residual capacities of vision and hearing. However, this effect was not observed when the participants had high residual capacities for vision and hearing. Thus, we considered that an additional tactile alarm could play a significant role in the CRTs when VA resources were consumed. There was no significant difference in the number of response errors between the three multimodal alarm modes. This study provides a key comparison of the two modes of multimodal alarms, indicating that VAT alarms are ideal for use in alarm design strategies for next-generation civil cockpits.</p>","PeriodicalId":55048,"journal":{"name":"Human Factors and Ergonomics in Manufacturing & Service Industries","volume":"34 4","pages":"279-291"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors and Ergonomics in Manufacturing & Service Industries","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hfm.21026","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to the increasing amount of information presented in the cockpit, the visual and hearing channels are unable to adequately transmit information, which may increase the mental load on pilots. This study explores the benefits of multimodal alarms under high and low residual capacities during take-off in civil aircrafts in a quasi-experimental study. The performance of two modes of multimodal (visual and auditory [VA], and visual, auditory, and tactile [VAT]) alarms were tested. The results showed that the VAT alarms were superior to the VA alarms in terms of choice response times (CRTs) when the participants were exposed to low residual capacities of vision and hearing. However, this effect was not observed when the participants had high residual capacities for vision and hearing. Thus, we considered that an additional tactile alarm could play a significant role in the CRTs when VA resources were consumed. There was no significant difference in the number of response errors between the three multimodal alarm modes. This study provides a key comparison of the two modes of multimodal alarms, indicating that VAT alarms are ideal for use in alarm design strategies for next-generation civil cockpits.
期刊介绍:
The purpose of Human Factors and Ergonomics in Manufacturing & Service Industries is to facilitate discovery, integration, and application of scientific knowledge about human aspects of manufacturing, and to provide a forum for worldwide dissemination of such knowledge for its application and benefit to manufacturing industries. The journal covers a broad spectrum of ergonomics and human factors issues with a focus on the design, operation and management of contemporary manufacturing systems, both in the shop floor and office environments, in the quest for manufacturing agility, i.e. enhancement and integration of human skills with hardware performance for improved market competitiveness, management of change, product and process quality, and human-system reliability. The inter- and cross-disciplinary nature of the journal allows for a wide scope of issues relevant to manufacturing system design and engineering, human resource management, social, organizational, safety, and health issues. Examples of specific subject areas of interest include: implementation of advanced manufacturing technology, human aspects of computer-aided design and engineering, work design, compensation and appraisal, selection training and education, labor-management relations, agile manufacturing and virtual companies, human factors in total quality management, prevention of work-related musculoskeletal disorders, ergonomics of workplace, equipment and tool design, ergonomics programs, guides and standards for industry, automation safety and robot systems, human skills development and knowledge enhancing technologies, reliability, and safety and worker health issues.