High Affinity of Nanoparticles and Matrices Based on Acid-Base Interaction for Nanoparticle-Filled Membrane

Tsutomu Makino, Keisuke Tabata, Takaaki Saito, Yosimasa Matsuo, A. Masuhara
{"title":"High Affinity of Nanoparticles and Matrices Based on Acid-Base Interaction for Nanoparticle-Filled Membrane","authors":"Tsutomu Makino, Keisuke Tabata, Takaaki Saito, Yosimasa Matsuo, A. Masuhara","doi":"10.3390/technologies12020024","DOIUrl":null,"url":null,"abstract":"The introduction of nanoparticles into the polymer matrix is a useful technique for creating highly functional composite membranes. Our research focuses on the development of nanoparticle-filled proton exchange membranes (PEMs). PEMs play a crucial role in efficiently controlling the electrical energy conversion process by facilitating the movement of specific ions. This is achieved by creating functionalized nanoparticles with polymer coatings on their surfaces, which are then combined with resins to create proton-conducting membranes. In this study, we prepared PEMs by coating the surfaces of silica nanoparticles with acidic polymers and integrating them into a basic matrix. This process resulted in the formation of a direct bond between the nanoparticles and the matrix, leading to composite membranes with a high dispersion and densely packed nanoparticles. This fabrication technique significantly improved mechanical strength and retention stability, resulting in high-performance membranes. Moreover, the proton conductivity of these membranes showed a remarkable enhancement of more than two orders of magnitude compared to the pristine basic matrix, reaching 4.2 × 10−4 S/cm at 80 °C and 95% relative humidity.","PeriodicalId":504839,"journal":{"name":"Technologies","volume":"21 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/technologies12020024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The introduction of nanoparticles into the polymer matrix is a useful technique for creating highly functional composite membranes. Our research focuses on the development of nanoparticle-filled proton exchange membranes (PEMs). PEMs play a crucial role in efficiently controlling the electrical energy conversion process by facilitating the movement of specific ions. This is achieved by creating functionalized nanoparticles with polymer coatings on their surfaces, which are then combined with resins to create proton-conducting membranes. In this study, we prepared PEMs by coating the surfaces of silica nanoparticles with acidic polymers and integrating them into a basic matrix. This process resulted in the formation of a direct bond between the nanoparticles and the matrix, leading to composite membranes with a high dispersion and densely packed nanoparticles. This fabrication technique significantly improved mechanical strength and retention stability, resulting in high-performance membranes. Moreover, the proton conductivity of these membranes showed a remarkable enhancement of more than two orders of magnitude compared to the pristine basic matrix, reaching 4.2 × 10−4 S/cm at 80 °C and 95% relative humidity.
基于酸碱相互作用的纳米粒子和基质对纳米粒子填充膜的高亲和性
在聚合物基质中引入纳米颗粒是一种制造高功能复合膜的有用技术。我们的研究重点是开发纳米粒子填充质子交换膜(PEM)。质子交换膜通过促进特定离子的移动,在有效控制电能转换过程中发挥着至关重要的作用。实现这一目的的方法是制造表面具有聚合物涂层的功能化纳米粒子,然后将其与树脂结合,制成质子传导膜。在这项研究中,我们在二氧化硅纳米粒子表面涂上酸性聚合物,并将其与碱性基质结合,从而制备出 PEM。这一过程在纳米颗粒和基质之间形成了直接结合,从而制备出了具有高分散性和高密度纳米颗粒的复合膜。这种制造技术大大提高了机械强度和保持稳定性,从而制造出高性能膜。此外,与原始基本基质相比,这些膜的质子电导率显著提高了两个数量级以上,在 80 °C 和 95% 相对湿度条件下达到 4.2 × 10-4 S/cm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信