{"title":"Review of dynamics and active control of large-scale space membrane antenna","authors":"Xiang Liu, Guoping Cai","doi":"10.1007/s42064-023-0181-5","DOIUrl":null,"url":null,"abstract":"<div><p>Large-scale space membrane antennas have significant potential in satellite communication, space-based early warning, and Earth observation. Because of their large size and high flexibility, the dynamic analysis and control of membrane antenna are challenging. To maintain the working performance of the antenna, the pointing and surface accuracies must be strictly maintained. Therefore, the accurate dynamic modeling and effective active control of large-scale space membrane antennas have great theoretical significance and practical value, and have attracted considerable interest in recent years. This paper reviews the dynamics and active control of large-scale space membrane antennas. First, the development and status of large-scale space membrane antennas are summarized. Subsequently, the key problems in the dynamics and active control of large membrane antennas, including the dynamics of wrinkled membranes, large-amplitude nonlinear vibration, nonlinear model reduction, rigid-flexible-thermal coupling dynamic modeling, on-orbit modal parameter identification, active vibration control, and wave-based vibration control, are discussed in detail. Finally, the research outlook and future trends are presented.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-023-0181-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Large-scale space membrane antennas have significant potential in satellite communication, space-based early warning, and Earth observation. Because of their large size and high flexibility, the dynamic analysis and control of membrane antenna are challenging. To maintain the working performance of the antenna, the pointing and surface accuracies must be strictly maintained. Therefore, the accurate dynamic modeling and effective active control of large-scale space membrane antennas have great theoretical significance and practical value, and have attracted considerable interest in recent years. This paper reviews the dynamics and active control of large-scale space membrane antennas. First, the development and status of large-scale space membrane antennas are summarized. Subsequently, the key problems in the dynamics and active control of large membrane antennas, including the dynamics of wrinkled membranes, large-amplitude nonlinear vibration, nonlinear model reduction, rigid-flexible-thermal coupling dynamic modeling, on-orbit modal parameter identification, active vibration control, and wave-based vibration control, are discussed in detail. Finally, the research outlook and future trends are presented.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.