Application of near-infrared spectroscopy for predicting the wood density of teakwood stands by increment cores and thin wood surface sampling

IF 1.3 Q2 MATERIALS SCIENCE, PAPER & WOOD
Imran Arra’d Sofianto, W. Dwianto, Sudarmanto, Narto, D. S. Adi, D. Triwibowo, T. Darmawan, Y. Amin, A. Bahanawan, P. S. Sejati, R. Damayanti, Djarwanto, Raden Gunawan Hadi Rahmanto, D. A. Agustiningrum, Rohmah Pari, L. M. Dewi, Sukma Surya Kusumah, S. Augustina, S. D. Marbun
{"title":"Application of near-infrared spectroscopy for predicting the wood density of teakwood stands by increment cores and thin wood surface sampling","authors":"Imran Arra’d Sofianto, W. Dwianto, Sudarmanto, Narto, D. S. Adi, D. Triwibowo, T. Darmawan, Y. Amin, A. Bahanawan, P. S. Sejati, R. Damayanti, Djarwanto, Raden Gunawan Hadi Rahmanto, D. A. Agustiningrum, Rohmah Pari, L. M. Dewi, Sukma Surya Kusumah, S. Augustina, S. D. Marbun","doi":"10.1177/20426445241230424","DOIUrl":null,"url":null,"abstract":"Density, as the most critical information for wood materials could be predicted by near-infrared (NIR) spectroscopy. Increment cores and thin wood samples of teakwood ( Tectona grandis) served as research materials for this new approach to sampling for NIR spectroscopy, explained in detail. Density data were combined with their NIR spectra data for analysis using cross-validation partial least squares regression as chemometrics to produce a density prediction model. A new approach of increment cores from teakwood stands for NIR spectroscopy measurements for density predictions resulting in a 0.34 coefficient of determination for cross-validation (R2CV) and 0.40 of R2CV for thin wood samples as the best result from the first derivative with 25 smoothing points of NIR spectra. The improvement from the previous research for density prediction accuracy resulted in an R2CV value of 0.55. The smaller diameter of the increment core sample than the NIR light beam's diameter and illuminated mixed surface (transversal and radial) are supposed to give weaker prediction accuracy by this new approach.","PeriodicalId":14414,"journal":{"name":"International Wood Products Journal","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Wood Products Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20426445241230424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

Density, as the most critical information for wood materials could be predicted by near-infrared (NIR) spectroscopy. Increment cores and thin wood samples of teakwood ( Tectona grandis) served as research materials for this new approach to sampling for NIR spectroscopy, explained in detail. Density data were combined with their NIR spectra data for analysis using cross-validation partial least squares regression as chemometrics to produce a density prediction model. A new approach of increment cores from teakwood stands for NIR spectroscopy measurements for density predictions resulting in a 0.34 coefficient of determination for cross-validation (R2CV) and 0.40 of R2CV for thin wood samples as the best result from the first derivative with 25 smoothing points of NIR spectra. The improvement from the previous research for density prediction accuracy resulted in an R2CV value of 0.55. The smaller diameter of the increment core sample than the NIR light beam's diameter and illuminated mixed surface (transversal and radial) are supposed to give weaker prediction accuracy by this new approach.
应用近红外光谱法通过增量木芯和薄木表面取样预测柚木的木材密度
密度是木质材料最关键的信息,可以通过近红外光谱进行预测。柚木(Tectona grandis)的增量木芯和薄木样本是这种近红外光谱取样新方法的研究材料,详细说明如下。密度数据与近红外光谱数据相结合,使用交叉验证偏最小二乘法回归作为化学计量学进行分析,生成密度预测模型。采用柚木增量芯材的近红外光谱测量新方法进行密度预测,交叉验证的判定系数(R2CV)为 0.34,薄木样本的 R2CV 为 0.40,这是 25 个平滑点近红外光谱一阶导数的最佳结果。与之前的研究相比,密度预测精度的提高使 R2CV 值达到了 0.55。由于增量芯材样品的直径小于近红外光束的直径,而且照射的是混合面(横向和径向),因此这种新方法的预测精度较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Wood Products Journal
International Wood Products Journal MATERIALS SCIENCE, PAPER & WOOD-
CiteScore
2.40
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信