Pierre de Callataÿ, Ana Mauleon, Vincent Vannetelbosch
{"title":"Local farsightedness in network formation","authors":"Pierre de Callataÿ, Ana Mauleon, Vincent Vannetelbosch","doi":"10.1111/ijet.12396","DOIUrl":null,"url":null,"abstract":"<p>We propose the concept of local-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> farsighted consistent network for analyzing network formation games where players only consider a limited number of feasible networks. A network <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>g</mi>\n </mrow>\n </mrow>\n <annotation> $g$</annotation>\n </semantics></math> is said to be local-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> farsightedly consistent if, for any network <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>g</mi>\n \n <mo>′</mo>\n </mrow>\n </mrow>\n <annotation> $g^{\\prime} $</annotation>\n </semantics></math> within the distance-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> neighborhood of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>g</mi>\n </mrow>\n </mrow>\n <annotation> $g$</annotation>\n </semantics></math>, either <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>g</mi>\n </mrow>\n </mrow>\n <annotation> $g$</annotation>\n </semantics></math> is not defeated by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>g</mi>\n \n <mo>′</mo>\n </mrow>\n </mrow>\n <annotation> $g^{\\prime} $</annotation>\n </semantics></math>, or <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>g</mi>\n </mrow>\n </mrow>\n <annotation> $g$</annotation>\n </semantics></math> defeats <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>g</mi>\n \n <mo>′</mo>\n </mrow>\n </mrow>\n <annotation> $g^{\\prime} $</annotation>\n </semantics></math>. We show that if the utility function is (componentwise) egalitarian or satisfies reversibility or excludes externalities across components, then local-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> farsightedness is more likely to be a good proxy for what would happen when players have full knowledge of all feasible networks.</p>","PeriodicalId":44551,"journal":{"name":"International Journal of Economic Theory","volume":"20 2","pages":"199-226"},"PeriodicalIF":0.5000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Economic Theory","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijet.12396","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose the concept of local- farsighted consistent network for analyzing network formation games where players only consider a limited number of feasible networks. A network is said to be local- farsightedly consistent if, for any network within the distance- neighborhood of , either is not defeated by , or defeats . We show that if the utility function is (componentwise) egalitarian or satisfies reversibility or excludes externalities across components, then local- farsightedness is more likely to be a good proxy for what would happen when players have full knowledge of all feasible networks.