Nonlinear Landauer formula for thermal transport of the electrons

Shihao Dong, kaixiang jia, Xinyu Liu, H. Geng, L. Sheng, D. Y. Xing
{"title":"Nonlinear Landauer formula for thermal transport of the electrons","authors":"Shihao Dong, kaixiang jia, Xinyu Liu, H. Geng, L. Sheng, D. Y. Xing","doi":"10.1209/0295-5075/ad29b4","DOIUrl":null,"url":null,"abstract":"\n The Landauer formula, originally formulated in the context of linear transport, has been a powerful tool for studying quantum devices. However, recent research has shown that extending its application to nonlinear and nonreciprocal transport is crucial for a more comprehensive understanding. In this work, we develop a nonlinear Landauer formula for thermal transport of the electrons and apply it to investigate thermal transport in graphene. Our study reveals intriguing phenomena especially in the presence of large temperature gradients and at low system temperatures. At these conditions, higher-order nonlinear currents emerge, indicating the significance of nonlinear effects in thermal transport. Unlike thermoelectric conductivity, thermal conductivity can be decomposed into intrinsic and extrinsic terms. This decomposition is based on whether the contributions rely on the derivative of the transmission coefficient with respect to energy. This nonlinear Landauer formula presented here serves as a valuable tool for future investigations into the intricate interplay between temperature gradients, system temperatures, and thermal transport in quantum devices","PeriodicalId":503117,"journal":{"name":"Europhysics Letters","volume":"824 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europhysics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad29b4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Landauer formula, originally formulated in the context of linear transport, has been a powerful tool for studying quantum devices. However, recent research has shown that extending its application to nonlinear and nonreciprocal transport is crucial for a more comprehensive understanding. In this work, we develop a nonlinear Landauer formula for thermal transport of the electrons and apply it to investigate thermal transport in graphene. Our study reveals intriguing phenomena especially in the presence of large temperature gradients and at low system temperatures. At these conditions, higher-order nonlinear currents emerge, indicating the significance of nonlinear effects in thermal transport. Unlike thermoelectric conductivity, thermal conductivity can be decomposed into intrinsic and extrinsic terms. This decomposition is based on whether the contributions rely on the derivative of the transmission coefficient with respect to energy. This nonlinear Landauer formula presented here serves as a valuable tool for future investigations into the intricate interplay between temperature gradients, system temperatures, and thermal transport in quantum devices
电子热传输的非线性兰道尔公式
兰道尔公式最初是在线性传输的背景下提出的,一直是研究量子器件的有力工具。然而,最近的研究表明,将其应用扩展到非线性和非互易传输对于更全面地理解至关重要。在这项工作中,我们开发了电子热传输的非线性朗道尔公式,并将其应用于研究石墨烯中的热传输。我们的研究揭示了一些有趣的现象,尤其是在存在较大温度梯度和系统温度较低的情况下。在这些条件下,出现了高阶非线性电流,表明了非线性效应在热传输中的重要性。与热电导不同,热导可以分解为内在项和外在项。这种分解是基于贡献是否依赖于传输系数相对于能量的导数。本文介绍的非线性朗道尔公式是未来研究量子器件中温度梯度、系统温度和热传输之间错综复杂的相互作用的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信