Teresa Valor , Lluís Coll , David I. Forrester , Hans Pretzsch , Miren del Río , Kamil Bielak , Bogdan Brzeziecki , Franz Binder , Torben Hilmers , Zuzana Sitková , Roberto Tognetti , Aitor Ameztegui
{"title":"Competitive effect, but not competitive response, varies along a climatic gradient depending on tree species identity","authors":"Teresa Valor , Lluís Coll , David I. Forrester , Hans Pretzsch , Miren del Río , Kamil Bielak , Bogdan Brzeziecki , Franz Binder , Torben Hilmers , Zuzana Sitková , Roberto Tognetti , Aitor Ameztegui","doi":"10.1016/j.fecs.2024.100176","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Understanding the role of species identity in interactions among individuals is crucial for assessing the productivity and stability of mixed forests over time. However, there is limited knowledge concerning the variation in competitive effect and response of different species along climatic gradients. In this study, we investigated the importance of climate, tree size, and competition on the growth of three tree species: spruce (<em>Picea abies</em>), fir (<em>Abies alba</em>), and beech (<em>Fagus sylvatica</em>), and examined their competitive response and effect along a climatic gradient.</p></div><div><h3>Methods</h3><p>We selected 39 plots distributed across the European mountains with records of the position and growth of 5,759 individuals. For each target species, models relating tree growth to tree size, climate and competition were proposed. Competition was modelled using a neighbourhood competition index that considered the effects of inter- and intraspecific competition on target trees. Competitive responses and effects were related to climate. Likelihood methods and information theory were used to select the best model.</p></div><div><h3>Results</h3><p>Our findings revealed that competition had a greater impact on target species growth than tree size or climate. Climate did influence the competitive effects of neighbouring species, but it did not affect the target species' response to competition. The strength of competitive effects varied along the gradient, contingent on the identity of the interacting species. When the target species exhibited an intermediate competitive effect relative to neighbouring species, both higher inter- than intraspecific competitive effects and competition reduction occurred along the gradient. Notably, species competitive effects were most pronounced when the target species’ growth was at its peak and weakest when growing conditions were far from their maximum.</p></div><div><h3>Conclusions</h3><p>Climate modulates the effects of competition from neighbouring trees on the target tree and not the susceptibility of the target tree to competition. The modelling approach should be useful in future research to expand our knowledge of how competition modulates forest communities across environmental gradients.</p></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":"11 ","pages":"Article 100176"},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2197562024000125/pdfft?md5=495aadb6b254702db4bb892dc162dd2e&pid=1-s2.0-S2197562024000125-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562024000125","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Understanding the role of species identity in interactions among individuals is crucial for assessing the productivity and stability of mixed forests over time. However, there is limited knowledge concerning the variation in competitive effect and response of different species along climatic gradients. In this study, we investigated the importance of climate, tree size, and competition on the growth of three tree species: spruce (Picea abies), fir (Abies alba), and beech (Fagus sylvatica), and examined their competitive response and effect along a climatic gradient.
Methods
We selected 39 plots distributed across the European mountains with records of the position and growth of 5,759 individuals. For each target species, models relating tree growth to tree size, climate and competition were proposed. Competition was modelled using a neighbourhood competition index that considered the effects of inter- and intraspecific competition on target trees. Competitive responses and effects were related to climate. Likelihood methods and information theory were used to select the best model.
Results
Our findings revealed that competition had a greater impact on target species growth than tree size or climate. Climate did influence the competitive effects of neighbouring species, but it did not affect the target species' response to competition. The strength of competitive effects varied along the gradient, contingent on the identity of the interacting species. When the target species exhibited an intermediate competitive effect relative to neighbouring species, both higher inter- than intraspecific competitive effects and competition reduction occurred along the gradient. Notably, species competitive effects were most pronounced when the target species’ growth was at its peak and weakest when growing conditions were far from their maximum.
Conclusions
Climate modulates the effects of competition from neighbouring trees on the target tree and not the susceptibility of the target tree to competition. The modelling approach should be useful in future research to expand our knowledge of how competition modulates forest communities across environmental gradients.
Forest EcosystemsEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍:
Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.