Cellulose Ethers from Banana (Musa balbisiana Colla) Blossom Cellulose: Synthesis and Multivariate Optimization

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Safira Zidna Salama, M. Firdaus, V. Suryanti
{"title":"Cellulose Ethers from Banana (Musa balbisiana Colla) Blossom Cellulose: Synthesis and Multivariate Optimization","authors":"Safira Zidna Salama, M. Firdaus, V. Suryanti","doi":"10.22146/ijc.86769","DOIUrl":null,"url":null,"abstract":"Cellulose ethers are biocompatible polymers which have attracted considerable attention for various applications due to their physical and mechanical properties. The present work aims to find the optimum condition for synthesizing cellulose ethers from banana blossom cellulose (BBC) such as methylcellulose (MC), carboxymethyl cellulose (CMC) and hydroxypropyl cellulose (HPC). The ultrasonication-assisted method as an energy source is used to shorten the synthesis time at room temperature and obtain high yields. The influences of various parameters (NaOH concentration, etherification agents, and sonication time) were analyzed using a multivariate statistical modeling response surface methodology (RSM). The materials were characterized by FTIR, SEM, and TGA. The cellulose ethers obtained have the potential as food additives with DS values of 2.0, 0.7, and 0.86, respectively. MC was synthesized optimally with a yield of 96.52% using a composition of cellulose (0.4 g), 50% (w/v) NaOH (10 mL) and dichloromethane (6 mL). CMC was synthesized optimally with a yield of 98.26% using a composition of cellulose (0.4 g), 30% (w/v) NaOH (2 mL) and monochloroacetic acid (1 g). HPC was synthesized optimally with a yield of 97.51% using a composition of cellulose (0.4 g), 10% (w/v) NaOH (2 mL) and propylene oxide (1.5 mL).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"69 ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.86769","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cellulose ethers are biocompatible polymers which have attracted considerable attention for various applications due to their physical and mechanical properties. The present work aims to find the optimum condition for synthesizing cellulose ethers from banana blossom cellulose (BBC) such as methylcellulose (MC), carboxymethyl cellulose (CMC) and hydroxypropyl cellulose (HPC). The ultrasonication-assisted method as an energy source is used to shorten the synthesis time at room temperature and obtain high yields. The influences of various parameters (NaOH concentration, etherification agents, and sonication time) were analyzed using a multivariate statistical modeling response surface methodology (RSM). The materials were characterized by FTIR, SEM, and TGA. The cellulose ethers obtained have the potential as food additives with DS values of 2.0, 0.7, and 0.86, respectively. MC was synthesized optimally with a yield of 96.52% using a composition of cellulose (0.4 g), 50% (w/v) NaOH (10 mL) and dichloromethane (6 mL). CMC was synthesized optimally with a yield of 98.26% using a composition of cellulose (0.4 g), 30% (w/v) NaOH (2 mL) and monochloroacetic acid (1 g). HPC was synthesized optimally with a yield of 97.51% using a composition of cellulose (0.4 g), 10% (w/v) NaOH (2 mL) and propylene oxide (1.5 mL).
香蕉(Musa balbisiana Colla)花纤维素中的纤维素醚:合成与多元优化
纤维素醚是一种生物相容性聚合物,由于其物理和机械特性,在各种应用领域都引起了广泛关注。本研究旨在寻找以香蕉花纤维素(BBC)为原料合成纤维素醚(如甲基纤维素(MC)、羧甲基纤维素(CMC)和羟丙基纤维素(HPC))的最佳条件。以超声波辅助法为能源,缩短了室温下的合成时间,并获得了高产率。采用多元统计建模响应面法(RSM)分析了各种参数(NaOH 浓度、醚化剂和超声时间)的影响。傅立叶变换红外光谱、扫描电镜和热重分析对材料进行了表征。获得的纤维素醚具有作为食品添加剂的潜力,其 DS 值分别为 2.0、0.7 和 0.86。使用纤维素(0.4 克)、50%(w/v)NaOH(10 毫升)和二氯甲烷(6 毫升)合成了 MC,合成率为 96.52%。使用纤维素(0.4 克)、30%(w/v)NaOH(2 毫升)和一氯乙酸(1 克)合成 CMC,合成率为 98.26%。使用纤维素(0.4 克)、10%(w/v)NaOH(2 毫升)和环氧丙烷(1.5 毫升)合成 HPC 的最佳产率为 97.51%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信