{"title":"Infinite-dimensional integration and L2-approximation on Hermite spaces","authors":"M. Gnewuch , A. Hinrichs , K. Ritter , R. Rüßmann","doi":"10.1016/j.jat.2024.106027","DOIUrl":null,"url":null,"abstract":"<div><p>We study integration and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-approximation of functions of infinitely many variables in the following setting: The underlying function space is the countably infinite tensor product of univariate Hermite spaces and the probability measure is the corresponding product of the standard normal distribution. The maximal domain of the functions from this tensor product space is necessarily a proper subset of the sequence space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. We establish upper and lower bounds for the minimal worst case errors under general assumptions; these bounds do match for tensor products of well-studied Hermite spaces of functions with finite or with infinite smoothness. In the proofs we employ embedding results, and the upper bounds are attained constructively with the help of multivariate decomposition methods.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524000133","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study integration and -approximation of functions of infinitely many variables in the following setting: The underlying function space is the countably infinite tensor product of univariate Hermite spaces and the probability measure is the corresponding product of the standard normal distribution. The maximal domain of the functions from this tensor product space is necessarily a proper subset of the sequence space . We establish upper and lower bounds for the minimal worst case errors under general assumptions; these bounds do match for tensor products of well-studied Hermite spaces of functions with finite or with infinite smoothness. In the proofs we employ embedding results, and the upper bounds are attained constructively with the help of multivariate decomposition methods.
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.