MATHEMATICAL MODEL FOR SYSTEM DYNAMICS OF (Ca2+) AND DOPAMINE IN A FIBROBLAST CELL

IF 1.3 4区 数学 Q3 BIOLOGY
Ankit Kothiya, N. Adlakha
{"title":"MATHEMATICAL MODEL FOR SYSTEM DYNAMICS OF (Ca2+) AND DOPAMINE IN A FIBROBLAST CELL","authors":"Ankit Kothiya, N. Adlakha","doi":"10.1142/s0218339024500177","DOIUrl":null,"url":null,"abstract":"Fibroblasts significantly affect wound healing, cancer progression and development. Disturbances in the calcium [Formula: see text] and dopamine [Formula: see text] dynamics leads to fibrotic disorders like cancer and fibrosis. Calcium signaling is required for [Formula: see text] concentrations in fibroblasts. Alteration in the many processes of [Formula: see text] kinetics can disturb [Formula: see text] regulation in fibroblast cells. No model has been reported till date for the study of spatiotemporal relationships of [Formula: see text] with calcium signaling in fibroblasts. A model is provided here to study the dynamic relationship of [Formula: see text] regulation with calcium signaling in a fibroblast cell. Finite element and Crank–Nicholson techniques are employed for numerical simulation. The numerical results provide insights into the buffer, source influx, and diffusion effects on the spatiotemporal dynamics of [Formula: see text] and [Formula: see text] in a fibroblast. Disturbances in the constitutive processes in the system dynamics of [Formula: see text] and [Formula: see text] can cause fibrotic diseases such as fibrosis and cancer in various organs.","PeriodicalId":54872,"journal":{"name":"Journal of Biological Systems","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339024500177","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fibroblasts significantly affect wound healing, cancer progression and development. Disturbances in the calcium [Formula: see text] and dopamine [Formula: see text] dynamics leads to fibrotic disorders like cancer and fibrosis. Calcium signaling is required for [Formula: see text] concentrations in fibroblasts. Alteration in the many processes of [Formula: see text] kinetics can disturb [Formula: see text] regulation in fibroblast cells. No model has been reported till date for the study of spatiotemporal relationships of [Formula: see text] with calcium signaling in fibroblasts. A model is provided here to study the dynamic relationship of [Formula: see text] regulation with calcium signaling in a fibroblast cell. Finite element and Crank–Nicholson techniques are employed for numerical simulation. The numerical results provide insights into the buffer, source influx, and diffusion effects on the spatiotemporal dynamics of [Formula: see text] and [Formula: see text] in a fibroblast. Disturbances in the constitutive processes in the system dynamics of [Formula: see text] and [Formula: see text] can cause fibrotic diseases such as fibrosis and cancer in various organs.
纤维泡沫细胞中(Ca2+)和多巴胺的系统动力学数学模型
成纤维细胞对伤口愈合、癌症进展和发展有着重要影响。钙[计算公式:见正文]和多巴胺[计算公式:见正文]动态紊乱会导致癌症和纤维化等纤维化疾病。成纤维细胞中的[公式:见正文]浓度需要钙信号传递。改变[公式:见正文]动力学的许多过程会扰乱成纤维细胞中的[公式:见正文]调节。迄今为止,还没有研究成纤维细胞中[公式:见正文]与钙信号转导时空关系的模型。本文提供了一个模型来研究成纤维细胞中[公式:见正文]调控与钙信号传导的动态关系。数值模拟采用了有限元和 Crank-Nicholson 技术。数值结果深入揭示了缓冲、源流入和扩散对成纤维细胞中[公式:见正文]和[公式:见正文]时空动态的影响。公式:见正文]和[公式:见正文]系统动力学组成过程的紊乱可导致纤维化疾病,如各种器官的纤维化和癌症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
12.50%
发文量
31
审稿时长
1 months
期刊介绍: The Journal of Biological Systems is published quarterly. The goal of the Journal is to promote interdisciplinary approaches in Biology and in Medicine, and the study of biological situations with a variety of tools, including mathematical and general systems methods. The Journal solicits original research papers and survey articles in areas that include (but are not limited to): Complex systems studies; isomorphies; nonlinear dynamics; entropy; mathematical tools and systems theories with applications in Biology and Medicine. Interdisciplinary approaches in Biology and Medicine; transfer of methods from one discipline to another; integration of biological levels, from atomic to molecular, macromolecular, cellular, and organic levels; animal biology; plant biology. Environmental studies; relationships between individuals, populations, communities and ecosystems; bioeconomics, management of renewable resources; hierarchy theory; integration of spatial and time scales. Evolutionary biology; co-evolutions; genetics and evolution; branching processes and phyllotaxis. Medical systems; physiology; cardiac modeling; computer models in Medicine; cancer research; epidemiology. Numerical simulations and computations; numerical study and analysis of biological data. Epistemology; history of science. The journal will also publish book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信