{"title":"Salivary gland carcinoma: Towards a more personalised approach","authors":"Layal Rached , Khalil Saleh , Odile Casiraghi , Caroline Even","doi":"10.1016/j.ctrv.2024.102697","DOIUrl":null,"url":null,"abstract":"<div><p>Salivary Gland carcinomas (SGCs) are rare tumors accounting for less than 1% of all cancers with 21 histologically diverse subtypes. The rarity of the disease presents a challenge for clinicians to conduct large size randomized controlled trials. Surgery and radiotherapy remain the only curative treatment for localized disease, whereas treatments for recurrent and metastatic disease remain more challenging with very disappointing results for chemotherapy.</p><p>The different histological subtypes harbor various genetic alterations, some pathognomonic with a diagnostic impact for pathologists in confirming a difficult diagnosis and others with therapeutic implications regardless of the histologic subtype. Current international guidelines urge pathologists to identify androgen receptor status, HER-2 expression that could be determined by immunohistochemistry, and TRK status in patients with non-adenoid cystic salivary gland carcinoma that are eligible to initiate a systemic treatment, in order to offer them available targeted therapies or refer them to clinical trials based on their mutational profile. A more advanced molecular profiling by next generation sequencing would offer a larger panel of molecular alterations with possible therapeutic implications such as NOTCH, PI3K, BRAF, MYB, and EGFR. In the following review, we present the most common genetic alterations in SGCs as well as actionable mutations with the latest available data on therapeutic options and upcoming clinical trials.</p></div>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030573722400015X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Salivary Gland carcinomas (SGCs) are rare tumors accounting for less than 1% of all cancers with 21 histologically diverse subtypes. The rarity of the disease presents a challenge for clinicians to conduct large size randomized controlled trials. Surgery and radiotherapy remain the only curative treatment for localized disease, whereas treatments for recurrent and metastatic disease remain more challenging with very disappointing results for chemotherapy.
The different histological subtypes harbor various genetic alterations, some pathognomonic with a diagnostic impact for pathologists in confirming a difficult diagnosis and others with therapeutic implications regardless of the histologic subtype. Current international guidelines urge pathologists to identify androgen receptor status, HER-2 expression that could be determined by immunohistochemistry, and TRK status in patients with non-adenoid cystic salivary gland carcinoma that are eligible to initiate a systemic treatment, in order to offer them available targeted therapies or refer them to clinical trials based on their mutational profile. A more advanced molecular profiling by next generation sequencing would offer a larger panel of molecular alterations with possible therapeutic implications such as NOTCH, PI3K, BRAF, MYB, and EGFR. In the following review, we present the most common genetic alterations in SGCs as well as actionable mutations with the latest available data on therapeutic options and upcoming clinical trials.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.