Predictive models for road traffic sign: Retroreflectivity status, retroreflectivity coefficient, and lifespan

IF 4.3 Q2 TRANSPORTATION
Roxan Saleh , Hasan Fleyeh
{"title":"Predictive models for road traffic sign: Retroreflectivity status, retroreflectivity coefficient, and lifespan","authors":"Roxan Saleh ,&nbsp;Hasan Fleyeh","doi":"10.1016/j.ijtst.2024.02.008","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the critical safety issue of declining retroreflectivity values of road traffic signs, which can lead to unsafe driving conditions, especially at night. The paper aims to predict the retroreflectivity coefficient values of these signs and to classify their status as acceptable or rejected (in need of replacement) using machine learning models. Moreover, logistic regression and survival analysis are used to predict the median lifespans of road traffic signs across various geographical locations, focusing on signs in Croatia and Sweden as case studies. The results indicate high accuracy in the predictive models, with classification accuracy at 94% and an <em>R</em><sup>2</sup> value of 94% for regression analysis. A significant finding is that a considerable number of signs maintain acceptable retroreflectivity levels within their warranty period, suggesting the feasibility of extending maintenance checks and warranty periods to 15 years which is longer than the current standard of 10 years. Additionally, the study reveals notable variations in the median lifespans of signs based on color and location. Blue signs in Croatia and Sweden exhibit the longest median lifespans (28 to 35 years), whereas white signs in Sweden and red signs in Croatia show the shortest (16 and 10 years, respectively). The high accuracy of logistic regression models (72–90%) for lifespan prediction confirms the effectiveness of this approach. These findings provide valuable insights for road authorities regarding the maintenance and management of road traffic signs, enhancing road safety standards.</div></div>","PeriodicalId":52282,"journal":{"name":"International Journal of Transportation Science and Technology","volume":"16 ","pages":"Pages 276-291"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transportation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2046043024000182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the critical safety issue of declining retroreflectivity values of road traffic signs, which can lead to unsafe driving conditions, especially at night. The paper aims to predict the retroreflectivity coefficient values of these signs and to classify their status as acceptable or rejected (in need of replacement) using machine learning models. Moreover, logistic regression and survival analysis are used to predict the median lifespans of road traffic signs across various geographical locations, focusing on signs in Croatia and Sweden as case studies. The results indicate high accuracy in the predictive models, with classification accuracy at 94% and an R2 value of 94% for regression analysis. A significant finding is that a considerable number of signs maintain acceptable retroreflectivity levels within their warranty period, suggesting the feasibility of extending maintenance checks and warranty periods to 15 years which is longer than the current standard of 10 years. Additionally, the study reveals notable variations in the median lifespans of signs based on color and location. Blue signs in Croatia and Sweden exhibit the longest median lifespans (28 to 35 years), whereas white signs in Sweden and red signs in Croatia show the shortest (16 and 10 years, respectively). The high accuracy of logistic regression models (72–90%) for lifespan prediction confirms the effectiveness of this approach. These findings provide valuable insights for road authorities regarding the maintenance and management of road traffic signs, enhancing road safety standards.
道路交通标志的预测模型:逆反射状态、逆反射系数和使用寿命
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Transportation Science and Technology
International Journal of Transportation Science and Technology Engineering-Civil and Structural Engineering
CiteScore
7.20
自引率
0.00%
发文量
105
审稿时长
88 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信