Metal-organic frameworks-based mixed matrix pervaporation membranes for recovery of organics

Zehai Xu , Chao Liu , Lulu Xiao , Qin Meng , Guoliang Zhang
{"title":"Metal-organic frameworks-based mixed matrix pervaporation membranes for recovery of organics","authors":"Zehai Xu ,&nbsp;Chao Liu ,&nbsp;Lulu Xiao ,&nbsp;Qin Meng ,&nbsp;Guoliang Zhang","doi":"10.1016/j.advmem.2024.100092","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-organic framework (MOF)-based mixed matrix membranes (MMMs) have attracted significant attentions for their distinguished characteristics in pervaporation such as enhanced selectivity, increased permeability and improved mechanical strength through the synergistic integration of polymeric matrices and inorganic fillers. Although many publications have emerged in recent years focusing on MOF-based MMMs, this review specifically emphasizes the improvement of MOF-based pervaporation membranes through the design of dimension of fillers and microstructure. The challenges encountered in MOF-based MMMs for pervaporation and the essential requirements for practical separation applications are addressed. A brief summary of strategies is provided for designing MOF-based MMMs with desired microstructure, macrostructure and multicomponent characteristics by using MOFs as fillers. The latest progresses in novel MOF-based MMMs with specific compositions, controllable pore structure and improved compatibility for recovery of organics are also displayed. The broad application prospects of MOF-based MMMs in pervaporation are introduced, including recovery of ethyl alcohol, butanol and other organics. Moreover, the challenges faced in the practical application of MOF-based MMMs for recovery of organics are presented and the promising future directions are outlined.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100092"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823424000034/pdfft?md5=c12b7e142d89e0394603d14eb285bb13&pid=1-s2.0-S2772823424000034-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823424000034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic framework (MOF)-based mixed matrix membranes (MMMs) have attracted significant attentions for their distinguished characteristics in pervaporation such as enhanced selectivity, increased permeability and improved mechanical strength through the synergistic integration of polymeric matrices and inorganic fillers. Although many publications have emerged in recent years focusing on MOF-based MMMs, this review specifically emphasizes the improvement of MOF-based pervaporation membranes through the design of dimension of fillers and microstructure. The challenges encountered in MOF-based MMMs for pervaporation and the essential requirements for practical separation applications are addressed. A brief summary of strategies is provided for designing MOF-based MMMs with desired microstructure, macrostructure and multicomponent characteristics by using MOFs as fillers. The latest progresses in novel MOF-based MMMs with specific compositions, controllable pore structure and improved compatibility for recovery of organics are also displayed. The broad application prospects of MOF-based MMMs in pervaporation are introduced, including recovery of ethyl alcohol, butanol and other organics. Moreover, the challenges faced in the practical application of MOF-based MMMs for recovery of organics are presented and the promising future directions are outlined.

Abstract Image

用于回收有机物的基于金属有机框架的混合基质渗透膜
基于金属有机框架(MOF)的混合基质膜(MMMs)因其在渗透汽化方面的突出特点而备受关注,例如通过聚合物基质和无机填料的协同整合而提高选择性、增加渗透性和改善机械强度。尽管近年来出现了许多关注基于 MOF 的 MMM 的出版物,但本综述特别强调通过设计填料的尺寸和微结构来改进基于 MOF 的渗透膜。文中探讨了基于 MOF 的 MMM 在渗透蒸发方面遇到的挑战以及实际分离应用的基本要求。简要概述了利用 MOFs 作为填料设计具有所需微观结构、宏观结构和多组分特性的 MOF 基 MMM 的策略。此外,还介绍了具有特定成分、可控孔隙结构和更好的有机物回收兼容性的新型 MOF 基 MMM 的最新进展。介绍了基于 MOF 的 MMM 在过蒸发中的广阔应用前景,包括乙醇、丁醇和其他有机物的回收。此外,还介绍了基于 MOF 的 MMMs 在有机物回收的实际应用中所面临的挑战,并概述了未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信