Tiancai Cheng, Qiang Liu, Guangjun Jiang, Qi Zhao, Dongming Mu
{"title":"The impact of baffle and taper channel tilt angle on the output performance of proton-exchange membrane fuel cells","authors":"Tiancai Cheng, Qiang Liu, Guangjun Jiang, Qi Zhao, Dongming Mu","doi":"10.1002/fuce.202300136","DOIUrl":null,"url":null,"abstract":"<p>The performance and durability of proton-exchange membrane fuel cells (PEMFCs) are constrained by fuel delivery and water management. Based on parallel and serpentine flow fields, the effects of triangular baffles (30°, 45°, and 60°) and conical runners (1°, 2°, and 3°) on the performance output of PEMFC at different angles are studied. The three-dimensional and multi-phase models are established by using the simulation software package (ANSYS FLUENT). The findings demonstrate that the battery's output performance reaches its peak when the baffle angle is set at 45°. When the output current density is 0.7 A/cm<sup>2</sup>, the power density of the 45° baffle increases by 18.87%. The pressure loss is not only lower than that of the 60° baffle but also exhibits no significant difference when compared to the 30° baffle. In addition, the introduction of conical channels has enhanced the output performance of PEMFCs in comparison to the traditional serpentine flow field. The power density of the 2°tapered channel exhibits a 12.65% increase when the output current density reaches 0.8 A/cm<sup>2</sup>. However, the performance output of the 3°tapered channel is inferior to that of the conventional serpentine flow field.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202300136","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The performance and durability of proton-exchange membrane fuel cells (PEMFCs) are constrained by fuel delivery and water management. Based on parallel and serpentine flow fields, the effects of triangular baffles (30°, 45°, and 60°) and conical runners (1°, 2°, and 3°) on the performance output of PEMFC at different angles are studied. The three-dimensional and multi-phase models are established by using the simulation software package (ANSYS FLUENT). The findings demonstrate that the battery's output performance reaches its peak when the baffle angle is set at 45°. When the output current density is 0.7 A/cm2, the power density of the 45° baffle increases by 18.87%. The pressure loss is not only lower than that of the 60° baffle but also exhibits no significant difference when compared to the 30° baffle. In addition, the introduction of conical channels has enhanced the output performance of PEMFCs in comparison to the traditional serpentine flow field. The power density of the 2°tapered channel exhibits a 12.65% increase when the output current density reaches 0.8 A/cm2. However, the performance output of the 3°tapered channel is inferior to that of the conventional serpentine flow field.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.