Mechanochemical Synthesis of Solid-State Electrolytes

Sanja Burazer, Jasminka Popović
{"title":"Mechanochemical Synthesis of Solid-State Electrolytes","authors":"Sanja Burazer, Jasminka Popović","doi":"10.3390/inorganics12020054","DOIUrl":null,"url":null,"abstract":"In recent decades, the field of materials research has put significant emphasis on developing innovative platforms that have the potential to address the increasing global energy demand. Batteries have demonstrated their enormous effectiveness in the context of energy storage and consumption. However, safety issues associated with liquid electrolytes combined with a low abundance of lithium in the Earth’s crust gave rise to the development of solid-state electrolytes and cations other than lithium. The commercial production of solid-state batteries demands the scaling up of solid-state electrolyte syntheses as well as the mixing of electrode composites containing solid electrolytes. This review is motivated by the recent literature, and it gives a thorough overview of solid-state electrolytes and highlights the significance of the employed milling and dispersing procedures for the resulting ionic transport properties.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inorganics12020054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent decades, the field of materials research has put significant emphasis on developing innovative platforms that have the potential to address the increasing global energy demand. Batteries have demonstrated their enormous effectiveness in the context of energy storage and consumption. However, safety issues associated with liquid electrolytes combined with a low abundance of lithium in the Earth’s crust gave rise to the development of solid-state electrolytes and cations other than lithium. The commercial production of solid-state batteries demands the scaling up of solid-state electrolyte syntheses as well as the mixing of electrode composites containing solid electrolytes. This review is motivated by the recent literature, and it gives a thorough overview of solid-state electrolytes and highlights the significance of the employed milling and dispersing procedures for the resulting ionic transport properties.
固态电解质的机械化学合成
近几十年来,材料研究领域一直非常重视开发具有解决全球日益增长的能源需求潜力的创新平台。在能源储存和消耗方面,电池已显示出巨大的功效。然而,与液态电解质相关的安全问题,加上地壳中锂的含量较低,促使人们开发固态电解质和锂以外的阳离子。固态电池的商业化生产要求扩大固态电解质合成的规模,以及混合含有固态电解质的电极复合材料。本综述以最新文献为基础,全面概述了固态电解质,并强调了所采用的研磨和分散程序对所产生的离子传输特性的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信