Liangsheng Qiu, Linwei Li, Ashraf Ashour, Siqi Ding, Baoguo Han
{"title":"Monitoring damage of concrete beams via self-sensing cement mortar coating with carbon nanotube-nano carbon black composite fillers","authors":"Liangsheng Qiu, Linwei Li, Ashraf Ashour, Siqi Ding, Baoguo Han","doi":"10.1177/1045389x231221129","DOIUrl":null,"url":null,"abstract":"Self-sensing concrete used in coating form for structural health monitoring of concrete structures has the merits of cost-effectiveness, offering protective effect on structural components, enabling electrical measurements unaffected by steel reinforcement and is also convenient to maintain and replace. This paper investigates the feasibility of using self-sensing cement mortar coating containing carbon nanotube-nano carbon black (CNT-NCB) composite fillers (CNCFs) for damage monitoring of concrete beams. The self-sensing cement mortar coated to concrete beams demonstrated outstanding electrical conductivity (resistivity ranging from 18 to 85 Ω·cm). Under monotonic flexural loadings, self-sensing cement mortar coating with 1.8 vol.% CNCFs featured sensitive self-sensing performance in terms of capturing the initiation of vertical cracks at pure bending span of concrete beams, with fractional change in resistivity (FCR) reaching up to 60.6%. Moreover, FCR variations of self-sensing cement mortar coating exhibited good synchronization and stability with the variation of mid-span deflections of concrete beams during cyclic flexural loadings irrespective of the contents of CNCFs and cyclic amplitudes. Remarkably, it was found that FCR of cement mortar coating basically showed a progressive upward tendency, representing irreversible increase in the resistance during cyclic loading. The irreversible residual FCR indicated the crack occurrence and damage accumulation of concrete beams.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"65 3","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x231221129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Self-sensing concrete used in coating form for structural health monitoring of concrete structures has the merits of cost-effectiveness, offering protective effect on structural components, enabling electrical measurements unaffected by steel reinforcement and is also convenient to maintain and replace. This paper investigates the feasibility of using self-sensing cement mortar coating containing carbon nanotube-nano carbon black (CNT-NCB) composite fillers (CNCFs) for damage monitoring of concrete beams. The self-sensing cement mortar coated to concrete beams demonstrated outstanding electrical conductivity (resistivity ranging from 18 to 85 Ω·cm). Under monotonic flexural loadings, self-sensing cement mortar coating with 1.8 vol.% CNCFs featured sensitive self-sensing performance in terms of capturing the initiation of vertical cracks at pure bending span of concrete beams, with fractional change in resistivity (FCR) reaching up to 60.6%. Moreover, FCR variations of self-sensing cement mortar coating exhibited good synchronization and stability with the variation of mid-span deflections of concrete beams during cyclic flexural loadings irrespective of the contents of CNCFs and cyclic amplitudes. Remarkably, it was found that FCR of cement mortar coating basically showed a progressive upward tendency, representing irreversible increase in the resistance during cyclic loading. The irreversible residual FCR indicated the crack occurrence and damage accumulation of concrete beams.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.