{"title":"Cyclodextrin Polymer-Loaded Micro-Ceramic Balls for Solid-Phase Extraction of Triazole Pesticides from Water","authors":"Xiaobo Yang, Lingli Yu, Shuqi Chen, Miao-chang Liu, Qian Miao, Hua-yue Wu, Wenxia Gao","doi":"10.3390/ijms25041959","DOIUrl":null,"url":null,"abstract":"A citric acid cross-linked β-cyclodextrin (β-CD) polymer was synthesized and loaded on micro-ceramic balls to fabricate the solid-phase adsorbents (P-MCB) for adsorption and extraction of triazole pesticides from water. The stability of β-CD polymer and P-MCB was investigated in solutions with different pH values at different temperatures. The adsorption properties and the influence of kinetics, sorbent amount, pesticide concentration, and temperature on the adsorption capacity were evaluated. The results showed P-MCB had favorable adsorption of 15.98 mg/g flutriafol in 3.5 h. The equilibrium data followed the Freundlich equation, and the adsorption of flutriafol and diniconazole followed the second-order kinetics. The recovery rate of P-MCB for triazole pesticides in water was satisfactory, and the recovery rate was still 80.1%, even at the 10th cycle. The P-MCB had good stability, with a degradation rate of 0.2% ± 0.08 within 10 days, which could ensure extraction and recycling.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"197 2","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms25041959","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A citric acid cross-linked β-cyclodextrin (β-CD) polymer was synthesized and loaded on micro-ceramic balls to fabricate the solid-phase adsorbents (P-MCB) for adsorption and extraction of triazole pesticides from water. The stability of β-CD polymer and P-MCB was investigated in solutions with different pH values at different temperatures. The adsorption properties and the influence of kinetics, sorbent amount, pesticide concentration, and temperature on the adsorption capacity were evaluated. The results showed P-MCB had favorable adsorption of 15.98 mg/g flutriafol in 3.5 h. The equilibrium data followed the Freundlich equation, and the adsorption of flutriafol and diniconazole followed the second-order kinetics. The recovery rate of P-MCB for triazole pesticides in water was satisfactory, and the recovery rate was still 80.1%, even at the 10th cycle. The P-MCB had good stability, with a degradation rate of 0.2% ± 0.08 within 10 days, which could ensure extraction and recycling.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.