M. Liebig, David Archer, Jonathan J. Halvorson, A. Clemensen, John R. Hendrickson, Donald L. Tanaka
{"title":"Soil responses to inclusion of corn, soybean, and cover crops under rainfed conditions in the northern Great Plains","authors":"M. Liebig, David Archer, Jonathan J. Halvorson, A. Clemensen, John R. Hendrickson, Donald L. Tanaka","doi":"10.1139/cjss-2023-0092","DOIUrl":null,"url":null,"abstract":"Crop rotations in the northern Great Plains of North America increasingly include corn ( Zea mays L.) and soybean ( Glycine max (L.) Merr.). Use of cover crops, while less extensive, is also increasing given their purported agronomic and environmental benefits. To date, soil responses to the inclusion of corn, soybean, and cover crops in rainfed cropping systems have not been well documented in the region. Therefore, soil properties were evaluated 6 years after establishment of three crop rotations (spring wheat ( Triticum aestivum L.)–soybean (SW–S), spring wheat–corn–soybean (SW–C–S), and spring wheat–corn–cover crop (SW–C–cc)) each split by no and minimum tillage on a Dark Brown Chernozem near Mandan, ND, USA. Soil responses to treatments were subtle and exclusive to the 0–7.6 cm depth. Soil pH was lower in SW–S than SW–C–cc (5.28 vs. 5.48; P = 0.05), SO4-S was greater under SW–C–cc than SW–C–S (13.4 vs. 11.6 g S kg−1; P = 0.03), exchangeable K was greater under SW–C–S and SW–C–cc than SW–S (0.83 cmol kg−1 vs. 0.52 cmol kg−1; P = 0.05), and water-stable aggregates were greater in SW–S than SW–C–S (26% vs. 19%; P = 0.08). Soil organic carbon (SOC) and total N did not differ among crop rotations or between tillage treatments, while particulate organic matter N was greater under no tillage compared to minimum tillage ( P = 0.08). Between 2012 and 2018, soil pH decreased and SOC increased under SW–C–S. Frequent monitoring of near-surface soil conditions in rotations with soybean every other year is recommended. Furthermore, innovative management practices are needed to enhance soil C and N fractions in rotations with full-season cover crops.","PeriodicalId":9384,"journal":{"name":"Canadian Journal of Soil Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjss-2023-0092","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Crop rotations in the northern Great Plains of North America increasingly include corn ( Zea mays L.) and soybean ( Glycine max (L.) Merr.). Use of cover crops, while less extensive, is also increasing given their purported agronomic and environmental benefits. To date, soil responses to the inclusion of corn, soybean, and cover crops in rainfed cropping systems have not been well documented in the region. Therefore, soil properties were evaluated 6 years after establishment of three crop rotations (spring wheat ( Triticum aestivum L.)–soybean (SW–S), spring wheat–corn–soybean (SW–C–S), and spring wheat–corn–cover crop (SW–C–cc)) each split by no and minimum tillage on a Dark Brown Chernozem near Mandan, ND, USA. Soil responses to treatments were subtle and exclusive to the 0–7.6 cm depth. Soil pH was lower in SW–S than SW–C–cc (5.28 vs. 5.48; P = 0.05), SO4-S was greater under SW–C–cc than SW–C–S (13.4 vs. 11.6 g S kg−1; P = 0.03), exchangeable K was greater under SW–C–S and SW–C–cc than SW–S (0.83 cmol kg−1 vs. 0.52 cmol kg−1; P = 0.05), and water-stable aggregates were greater in SW–S than SW–C–S (26% vs. 19%; P = 0.08). Soil organic carbon (SOC) and total N did not differ among crop rotations or between tillage treatments, while particulate organic matter N was greater under no tillage compared to minimum tillage ( P = 0.08). Between 2012 and 2018, soil pH decreased and SOC increased under SW–C–S. Frequent monitoring of near-surface soil conditions in rotations with soybean every other year is recommended. Furthermore, innovative management practices are needed to enhance soil C and N fractions in rotations with full-season cover crops.
期刊介绍:
The Canadian Journal of Soil Science is an international peer-reviewed journal published in cooperation with the Canadian Society of Soil Science. The journal publishes original research on the use, management, structure and development of soils and draws from the disciplines of soil science, agrometeorology, ecology, agricultural engineering, environmental science, hydrology, forestry, geology, geography and climatology. Research is published in a number of topic sections including: agrometeorology; ecology, biological processes and plant interactions; composition and chemical processes; physical processes and interfaces; genesis, landscape processes and relationships; contamination and environmental stewardship; and management for agricultural, forestry and urban uses.