{"title":"Network Sliced Distributed Learning-as-a-Service for Internet of Vehicles Applications in 6G Non-Terrestrial Network Scenarios","authors":"David Naseh, S. Shinde, D. Tarchi","doi":"10.3390/jsan13010014","DOIUrl":null,"url":null,"abstract":"In the rapidly evolving landscape of next-generation 6G systems, the integration of AI functions to orchestrate network resources and meet stringent user requirements is a key focus. Distributed Learning (DL), a promising set of techniques that shape the future of 6G communication systems, plays a pivotal role. Vehicular applications, representing various services, are likely to benefit significantly from the advances of 6G technologies, enabling dynamic management infused with inherent intelligence. However, the deployment of various DL methods in traditional vehicular settings with specific demands and resource constraints poses challenges. The emergence of distributed computing and communication resources, such as the edge-cloud continuum and integrated terrestrial and non-terrestrial networks (T/NTN), provides a solution. Efficiently harnessing these resources and simultaneously implementing diverse DL methods becomes crucial, and Network Slicing (NS) emerges as a valuable tool. This study delves into the analysis of DL methods suitable for vehicular environments alongside NS. Subsequently, we present a framework to facilitate DL-as-a-Service (DLaaS) on a distributed networking platform, empowering the proactive deployment of DL algorithms. This approach allows for the effective management of heterogeneous services with varying requirements. The proposed framework is exemplified through a detailed case study in a vehicular integrated T/NTN with diverse service demands from specific regions. Performance analysis highlights the advantages of the DLaaS approach, focusing on flexibility, performance enhancement, added intelligence, and increased user satisfaction in the considered T/NTN vehicular scenario.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"17 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan13010014","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the rapidly evolving landscape of next-generation 6G systems, the integration of AI functions to orchestrate network resources and meet stringent user requirements is a key focus. Distributed Learning (DL), a promising set of techniques that shape the future of 6G communication systems, plays a pivotal role. Vehicular applications, representing various services, are likely to benefit significantly from the advances of 6G technologies, enabling dynamic management infused with inherent intelligence. However, the deployment of various DL methods in traditional vehicular settings with specific demands and resource constraints poses challenges. The emergence of distributed computing and communication resources, such as the edge-cloud continuum and integrated terrestrial and non-terrestrial networks (T/NTN), provides a solution. Efficiently harnessing these resources and simultaneously implementing diverse DL methods becomes crucial, and Network Slicing (NS) emerges as a valuable tool. This study delves into the analysis of DL methods suitable for vehicular environments alongside NS. Subsequently, we present a framework to facilitate DL-as-a-Service (DLaaS) on a distributed networking platform, empowering the proactive deployment of DL algorithms. This approach allows for the effective management of heterogeneous services with varying requirements. The proposed framework is exemplified through a detailed case study in a vehicular integrated T/NTN with diverse service demands from specific regions. Performance analysis highlights the advantages of the DLaaS approach, focusing on flexibility, performance enhancement, added intelligence, and increased user satisfaction in the considered T/NTN vehicular scenario.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico