Farnaz Fereidoonian, S. Sadjadi, Mahdi Heydari, S. M. Mirzapour Al-e-Hashem
{"title":"A timely efficient and emissions-aware multiobjective truck-sharing integrated scheduling model in container terminals","authors":"Farnaz Fereidoonian, S. Sadjadi, Mahdi Heydari, S. M. Mirzapour Al-e-Hashem","doi":"10.1177/14750902231225694","DOIUrl":null,"url":null,"abstract":"In line with the development of green port terminals and the necessity of environmentally friendly efficient use of handling and transportation equipment, criteria such as emission reduction, energy minimization, and efficiency in a container terminal are prominent issues, which in recent years, have been the main concern of container terminal managers in developing terminal operating systems. Therefore, in this study, a bi-objective mixed integer mathematical programing model of integrated scheduling for ships’ loading and unloading operation sequencing in container terminals is proposed, which considers the minimization of containers’ flow time, trucks’ emission, and energy consumption as well as sharing trucks among quay cranes and decreasing their empty trips. In this model trucks’ technical specifications and polluting levels are input parameters for estimating emission and energy consumption of operation, which consequently leads to two uniform parallel machine scheduling models. To derive the exact solution of the model, the epsilon-constraint method is applied. Nevertheless, due to the problem’s NP-hardness attribute, two variants of non-dominated sorting genetic algorithm and multiobjective particle swarm optimization metaheuristic algorithms are proposed to identify the approximate Pareto front of solutions. In large-size problems, these algorithms outperform the epsilon-constraint method by finding acceptable results in a reasonable time. This model, which could be embedded in terminal operating software, not only yields a practical optimum operational sequence but also measures the amount of energy and emission from trucks during loading and unloading operations. The results, which utilized the data collected from Shahid Rajaee port in southern Iran, indicate that this practical model as compared to the current procedure in the terminal, results in a significant improvement in energy and emission reduction and terminal flow time.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231225694","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In line with the development of green port terminals and the necessity of environmentally friendly efficient use of handling and transportation equipment, criteria such as emission reduction, energy minimization, and efficiency in a container terminal are prominent issues, which in recent years, have been the main concern of container terminal managers in developing terminal operating systems. Therefore, in this study, a bi-objective mixed integer mathematical programing model of integrated scheduling for ships’ loading and unloading operation sequencing in container terminals is proposed, which considers the minimization of containers’ flow time, trucks’ emission, and energy consumption as well as sharing trucks among quay cranes and decreasing their empty trips. In this model trucks’ technical specifications and polluting levels are input parameters for estimating emission and energy consumption of operation, which consequently leads to two uniform parallel machine scheduling models. To derive the exact solution of the model, the epsilon-constraint method is applied. Nevertheless, due to the problem’s NP-hardness attribute, two variants of non-dominated sorting genetic algorithm and multiobjective particle swarm optimization metaheuristic algorithms are proposed to identify the approximate Pareto front of solutions. In large-size problems, these algorithms outperform the epsilon-constraint method by finding acceptable results in a reasonable time. This model, which could be embedded in terminal operating software, not only yields a practical optimum operational sequence but also measures the amount of energy and emission from trucks during loading and unloading operations. The results, which utilized the data collected from Shahid Rajaee port in southern Iran, indicate that this practical model as compared to the current procedure in the terminal, results in a significant improvement in energy and emission reduction and terminal flow time.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.