Machine learning prediction of factors affecting Major League Baseball (MLB) game attendance: algorithm comparisons and macroeconomic factor of unemployment
Juho Park, Junghwan Cho, Alex C. Gang, Hyun-Woo Lee, Paul M. Pedersen
{"title":"Machine learning prediction of factors affecting Major League Baseball (MLB) game attendance: algorithm comparisons and macroeconomic factor of unemployment","authors":"Juho Park, Junghwan Cho, Alex C. Gang, Hyun-Woo Lee, Paul M. Pedersen","doi":"10.1108/ijsms-06-2023-0129","DOIUrl":null,"url":null,"abstract":"PurposeThis study aims to identify an automated machine learning algorithm with high accuracy that sport practitioners can use to identify the specific factors for predicting Major League Baseball (MLB) attendance. Furthermore, by predicting spectators for each league (American League and National League) and division in MLB, the authors will identify the specific factors that increase accuracy, discuss them and provide implications for marketing strategies for academics and practitioners in sport.Design/methodology/approachThis study used six years of daily MLB game data (2014–2019). All data were collected as predictors, such as game performance, weather and unemployment rate. Also, the attendance rate was obtained as an observation variable. The Random Forest, Lasso regression models and XGBoost were used to build the prediction model, and the analysis was conducted using Python 3.7.FindingsThe RMSE value was 0.14, and the R2 was 0.62 as a consequence of fine-tuning the tuning parameters of the XGBoost model, which had the best performance in forecasting the attendance rate. The most influential variables in the model are “Rank” of 0.247 and “Day of the week”, “Home team” and “Day/Night game” were shown as influential variables in order. The result was shown that the “Unemployment rate”, as a macroeconomic factor, has a value of 0.06 and weather factors were a total value of 0.147.Originality/valueThis research highlights unemployment rate as a determinant affecting MLB game attendance rates. Beyond contextual elements such as climate, the findings of this study underscore the significance of economic factors, particularly unemployment rates, necessitating further investigation into these factors to gain a more comprehensive understanding of game attendance.","PeriodicalId":501000,"journal":{"name":"International Journal of Sports Marketing and Sponsorship","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sports Marketing and Sponsorship","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijsms-06-2023-0129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeThis study aims to identify an automated machine learning algorithm with high accuracy that sport practitioners can use to identify the specific factors for predicting Major League Baseball (MLB) attendance. Furthermore, by predicting spectators for each league (American League and National League) and division in MLB, the authors will identify the specific factors that increase accuracy, discuss them and provide implications for marketing strategies for academics and practitioners in sport.Design/methodology/approachThis study used six years of daily MLB game data (2014–2019). All data were collected as predictors, such as game performance, weather and unemployment rate. Also, the attendance rate was obtained as an observation variable. The Random Forest, Lasso regression models and XGBoost were used to build the prediction model, and the analysis was conducted using Python 3.7.FindingsThe RMSE value was 0.14, and the R2 was 0.62 as a consequence of fine-tuning the tuning parameters of the XGBoost model, which had the best performance in forecasting the attendance rate. The most influential variables in the model are “Rank” of 0.247 and “Day of the week”, “Home team” and “Day/Night game” were shown as influential variables in order. The result was shown that the “Unemployment rate”, as a macroeconomic factor, has a value of 0.06 and weather factors were a total value of 0.147.Originality/valueThis research highlights unemployment rate as a determinant affecting MLB game attendance rates. Beyond contextual elements such as climate, the findings of this study underscore the significance of economic factors, particularly unemployment rates, necessitating further investigation into these factors to gain a more comprehensive understanding of game attendance.