Michael P. Backlund, Pauliina Repo, Harri Kangas, Kati Donner, Eeva-Marja Sankila, Julia Krootila, Maarjaliis Paavo, Kirmo Wartiovaara, Tero T. Kivelä, Joni A. Turunen
{"title":"Characterisation of a LINE-1 Insertion in the RP1 Gene by Targeted Adaptive Nanopore Sequencing in a Family with Retinitis Pigmentosa","authors":"Michael P. Backlund, Pauliina Repo, Harri Kangas, Kati Donner, Eeva-Marja Sankila, Julia Krootila, Maarjaliis Paavo, Kirmo Wartiovaara, Tero T. Kivelä, Joni A. Turunen","doi":"10.1155/2024/6580561","DOIUrl":null,"url":null,"abstract":"<p>Retinitis pigmentosa (RP) is a group of inherited degenerative retinal disorders affecting more than 1.5 million people worldwide. For 30-50% of individuals with RP, the genetic cause remains unresolved by current clinical diagnostic gene panels. It is likely explained by variants in novel RP-associated genes or noncoding regulatory regions, or by complex genetic alterations such as large structural variants. Recent developments in long-read sequencing techniques have opened an opportunity for efficient analysis of complex genetic variants. We analysed a Finnish family with dominantly inherited RP affecting six individuals in three generations. Two affected individuals underwent a comprehensive clinical examination in combination with a clinical diagnostic gene panel, followed by whole exome sequencing in our laboratory. They exhibited typical signs of RP, yet initial sequence analysis found no causative variants. Reanalysis of the sequencing data detected a LINE-1 (L1) retrotransposon insertion of unknown size in exon 4 of the RP1 axonemal microtubule-associated (<i>RP1</i>) gene. The large chimeric L1 insertion that segregated with the disease was further characterised using targeted adaptive nanopore sequencing of <i>RP1</i>, allowing us to identify a 5.6 kb L1 transposable element insertion in <i>RP1</i> as the cause of RP in this family with dominantly inherited RP.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":"2024 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Mutation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6580561","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Retinitis pigmentosa (RP) is a group of inherited degenerative retinal disorders affecting more than 1.5 million people worldwide. For 30-50% of individuals with RP, the genetic cause remains unresolved by current clinical diagnostic gene panels. It is likely explained by variants in novel RP-associated genes or noncoding regulatory regions, or by complex genetic alterations such as large structural variants. Recent developments in long-read sequencing techniques have opened an opportunity for efficient analysis of complex genetic variants. We analysed a Finnish family with dominantly inherited RP affecting six individuals in three generations. Two affected individuals underwent a comprehensive clinical examination in combination with a clinical diagnostic gene panel, followed by whole exome sequencing in our laboratory. They exhibited typical signs of RP, yet initial sequence analysis found no causative variants. Reanalysis of the sequencing data detected a LINE-1 (L1) retrotransposon insertion of unknown size in exon 4 of the RP1 axonemal microtubule-associated (RP1) gene. The large chimeric L1 insertion that segregated with the disease was further characterised using targeted adaptive nanopore sequencing of RP1, allowing us to identify a 5.6 kb L1 transposable element insertion in RP1 as the cause of RP in this family with dominantly inherited RP.
期刊介绍:
Human Mutation is a peer-reviewed journal that offers publication of original Research Articles, Methods, Mutation Updates, Reviews, Database Articles, Rapid Communications, and Letters on broad aspects of mutation research in humans. Reports of novel DNA variations and their phenotypic consequences, reports of SNPs demonstrated as valuable for genomic analysis, descriptions of new molecular detection methods, and novel approaches to clinical diagnosis are welcomed. Novel reports of gene organization at the genomic level, reported in the context of mutation investigation, may be considered. The journal provides a unique forum for the exchange of ideas, methods, and applications of interest to molecular, human, and medical geneticists in academic, industrial, and clinical research settings worldwide.