Forward Kinematics Analysis of High-Precision Optoelectronic Packaging Platform

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ziyang Wang, Haibo Zhou, Linjiao Xiao, Lian Duan
{"title":"Forward Kinematics Analysis of High-Precision Optoelectronic Packaging Platform","authors":"Ziyang Wang, Haibo Zhou, Linjiao Xiao, Lian Duan","doi":"10.1115/1.4064704","DOIUrl":null,"url":null,"abstract":"\n To meet the requirements of high-precision motion control for optoelectronic packaging platforms, we propose an improved particle swarm optimization and backpropagation (IPSO-BP) neural network for solving the forward kinematics problem (FKP) of platforms. The focus of this paper is the 6-pss flexible parallel platform commonly used in optoelectronic packaging. First, a platform inverse kinematics problem (IKP) based on a flexibility matrix is solved using geometric and vector analysis. The conventional PSO-BP network is then optimized utilizing uniform design (UD), a random learning strategy, and space reduction techniques in FKP. Finally, simulations and experiments demonstrate that the proposed IPSO-BP network for solving the FKP on high-precision optoelectronic packaging platforms is feasible. Compared to BP and PSO-BP, this network has a higher resolution, faster convergence speed, and error control at the submicron level, which satisfies the motion control requirements of the platform at the micron level. This study lays a solid foundation for the production of high-quality devices in optoelectronic packaging.","PeriodicalId":15663,"journal":{"name":"Journal of Electronic Packaging","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Packaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064704","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To meet the requirements of high-precision motion control for optoelectronic packaging platforms, we propose an improved particle swarm optimization and backpropagation (IPSO-BP) neural network for solving the forward kinematics problem (FKP) of platforms. The focus of this paper is the 6-pss flexible parallel platform commonly used in optoelectronic packaging. First, a platform inverse kinematics problem (IKP) based on a flexibility matrix is solved using geometric and vector analysis. The conventional PSO-BP network is then optimized utilizing uniform design (UD), a random learning strategy, and space reduction techniques in FKP. Finally, simulations and experiments demonstrate that the proposed IPSO-BP network for solving the FKP on high-precision optoelectronic packaging platforms is feasible. Compared to BP and PSO-BP, this network has a higher resolution, faster convergence speed, and error control at the submicron level, which satisfies the motion control requirements of the platform at the micron level. This study lays a solid foundation for the production of high-quality devices in optoelectronic packaging.
高精度光电封装平台的正向运动学分析
为了满足光电封装平台高精度运动控制的要求,我们提出了一种改进的粒子群优化和反向传播(IPSO-BP)神经网络,用于解决平台的正向运动学问题(FKP)。本文的重点是光电封装中常用的 6-pss 柔性并联平台。首先,利用几何和矢量分析解决了基于柔性矩阵的平台逆运动学问题(IKP)。然后,利用统一设计(UD)、随机学习策略和 FKP 中的空间缩小技术对传统 PSO-BP 网络进行优化。最后,模拟和实验证明,在高精度光电封装平台上求解 FKP 的 IPSO-BP 网络是可行的。与 BP 和 PSO-BP 相比,该网络具有更高的分辨率、更快的收敛速度以及亚微米级的误差控制,满足了平台在微米级的 运动控制要求。这项研究为生产高质量的光电封装器件奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electronic Packaging
Journal of Electronic Packaging 工程技术-工程:电子与电气
CiteScore
4.90
自引率
6.20%
发文量
44
审稿时长
3 months
期刊介绍: The Journal of Electronic Packaging publishes papers that use experimental and theoretical (analytical and computer-aided) methods, approaches, and techniques to address and solve various mechanical, materials, and reliability problems encountered in the analysis, design, manufacturing, testing, and operation of electronic and photonics components, devices, and systems. Scope: Microsystems packaging; Systems integration; Flexible electronics; Materials with nano structures and in general small scale systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信