Study of several probability distribution functions for the Klein–Kramers equation

Yaxi Li, Yue Kai
{"title":"Study of several probability distribution functions for the Klein–Kramers equation","authors":"Yaxi Li, Yue Kai","doi":"10.1142/s0217984924502129","DOIUrl":null,"url":null,"abstract":"In this paper, we take variable separation method to study Klein–Kramers (KK) equation. By choosing different eigenvalues and noise functions, we can get different probability density functions (PDFs) of KK equation. These PDFs contain not only normal distributions but also other distributions that correspond to anomalous diffusion phenomena. For example, power-law distribution, truncated Cauchy–Lorentz distribution, Weibull distribution, log-logistic distribution, Gamma distribution. We also show the 3D and 2D profiles of these PDFs to analyze the corresponding dynamic properties and illustrate the possible practical applications of these results. In addition, we also find some exact solutions that are not PDFs. They are also listed to ensure the completeness of the results and to illustrate the potential applications of these exact solutions.","PeriodicalId":503716,"journal":{"name":"Modern Physics Letters B","volume":" 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217984924502129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we take variable separation method to study Klein–Kramers (KK) equation. By choosing different eigenvalues and noise functions, we can get different probability density functions (PDFs) of KK equation. These PDFs contain not only normal distributions but also other distributions that correspond to anomalous diffusion phenomena. For example, power-law distribution, truncated Cauchy–Lorentz distribution, Weibull distribution, log-logistic distribution, Gamma distribution. We also show the 3D and 2D profiles of these PDFs to analyze the corresponding dynamic properties and illustrate the possible practical applications of these results. In addition, we also find some exact solutions that are not PDFs. They are also listed to ensure the completeness of the results and to illustrate the potential applications of these exact solutions.
克莱因-克拉默方程的几种概率分布函数研究
本文采用变量分离法研究克莱因-克拉默斯(KK)方程。通过选择不同的特征值和噪声函数,我们可以得到 KK 方程的不同概率密度函数(PDF)。这些 PDF 不仅包含正态分布,还包含与异常扩散现象相对应的其他分布。例如,幂律分布、截断考奇-洛伦兹分布、威布尔分布、对数-逻辑分布、伽马分布。我们还展示了这些分布的三维和二维剖面,以分析相应的动态特性,并说明这些结果可能的实际应用。此外,我们还发现了一些非 PDF 的精确解。为了确保结果的完整性,并说明这些精确解的潜在应用,我们也列出了这些精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信