Jie Yu, Martin Hand, Laura J. Morrissey, Justin L. Payne
{"title":"A buried gneiss dome in the northern Gawler Craton: The record of early Mesoproterozoic (ca. 1600–1560 Ma) extension in southern Proterozoic Australia","authors":"Jie Yu, Martin Hand, Laura J. Morrissey, Justin L. Payne","doi":"10.1111/jmg.12762","DOIUrl":null,"url":null,"abstract":"<p>Mabel Creek Ridge, in the northern Gawler Craton, is a granulite-facies domain recording early Mesoproterozoic metamorphism, flanked by less metamorphosed rocks and dissected by crustal-scale divergent structures. The nature of early Mesoproterozoic events is poorly understood due to the lack of basement outcrop. Calculated metamorphic phase diagrams and geochronology are used to decipher the tectonic regime of a potential gneiss dome. Pressure–temperature (<i>P–T</i>) modelling of metapelites from five drill holes across Mabel Creek Ridge suggests it has experienced conditions of ~6.4–7.4 kbar and 800–850°C and the growth of suprasolidus cordierite after garnet indicates subsequent decompression. In situ U–Pb monazite and Lu–Hf garnet geochronology constrains the granulite-facies metamorphism of Mabel Creek Ridge to <i>ca</i>. 1600–1560 Ma. In contrast, drill hole GOMA DH4 located to the north of Mabel Creek Ridge records conditions of 2.2–5.4 kbar and 710–740°C at <i>ca</i>. 1520 Ma, with no evidence for 1600–1560 Ma metamorphism. Our new <i>P–T</i> pseudosection results and geochronology data from Mabel Creek Ridge and adjacent crust, coupled with the regional seismic and airborne magnetic data, reveal that Mabel Creek Ridge represents a record of early Mesoproterozoic extension in the Gawler Craton, during which thermally perturbed lower crustal rocks were exhumed within a gneiss dome. Early Mesoproterozoic extension took place within a complex geodynamic regime resulting from the interplay between final Nuna convergence along the margin of northeast Australia at <i>ca</i>. 1600 Ma and subduction to the southwest at <i>ca</i>. 1630–1610 Ma.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":"42 4","pages":"497-527"},"PeriodicalIF":3.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmg.12762","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metamorphic Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12762","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mabel Creek Ridge, in the northern Gawler Craton, is a granulite-facies domain recording early Mesoproterozoic metamorphism, flanked by less metamorphosed rocks and dissected by crustal-scale divergent structures. The nature of early Mesoproterozoic events is poorly understood due to the lack of basement outcrop. Calculated metamorphic phase diagrams and geochronology are used to decipher the tectonic regime of a potential gneiss dome. Pressure–temperature (P–T) modelling of metapelites from five drill holes across Mabel Creek Ridge suggests it has experienced conditions of ~6.4–7.4 kbar and 800–850°C and the growth of suprasolidus cordierite after garnet indicates subsequent decompression. In situ U–Pb monazite and Lu–Hf garnet geochronology constrains the granulite-facies metamorphism of Mabel Creek Ridge to ca. 1600–1560 Ma. In contrast, drill hole GOMA DH4 located to the north of Mabel Creek Ridge records conditions of 2.2–5.4 kbar and 710–740°C at ca. 1520 Ma, with no evidence for 1600–1560 Ma metamorphism. Our new P–T pseudosection results and geochronology data from Mabel Creek Ridge and adjacent crust, coupled with the regional seismic and airborne magnetic data, reveal that Mabel Creek Ridge represents a record of early Mesoproterozoic extension in the Gawler Craton, during which thermally perturbed lower crustal rocks were exhumed within a gneiss dome. Early Mesoproterozoic extension took place within a complex geodynamic regime resulting from the interplay between final Nuna convergence along the margin of northeast Australia at ca. 1600 Ma and subduction to the southwest at ca. 1630–1610 Ma.
期刊介绍:
The journal, which is published nine times a year, encompasses the entire range of metamorphic studies, from the scale of the individual crystal to that of lithospheric plates, including regional studies of metamorphic terranes, modelling of metamorphic processes, microstructural and deformation studies in relation to metamorphism, geochronology and geochemistry in metamorphic systems, the experimental study of metamorphic reactions, properties of metamorphic minerals and rocks and the economic aspects of metamorphic terranes.