Oriana E. Chafe, A. Broz, Eric S. Levenson, Michael D. Farinacci, Riley O. Anderson, Lucas C. R. Silva
{"title":"The spatiotemporal domains of natural climate solutions research and strategies for implementation in the Pacific Northwest, USA","authors":"Oriana E. Chafe, A. Broz, Eric S. Levenson, Michael D. Farinacci, Riley O. Anderson, Lucas C. R. Silva","doi":"10.3389/fclim.2024.1273632","DOIUrl":null,"url":null,"abstract":"Natural climate solutions have been proposed as a way to mitigate climate change by removing CO2 and other greenhouse gases from the atmosphere and increasing carbon storage in ecosystems. The adoption of such practices is required at large spatial and temporal scales, which means that local implementation across different land use and conservation sectors must be coordinated at landscape and regional levels. Here, we describe the spatiotemporal domains of research in the field of climate solutions and, as a first approximation, we use the Pacific Northwest (PNW) of the United States as a model system to evaluate the potential for coordinated implementations. By combining estimates of soil organic carbon stocks and CO2 fluxes with projected changes in climate, we show how land use may be prioritized to improve carbon drawdown and permanence across multiple sectors at local to regional scales. Our consideration of geographical context acknowledges some of the ecological and social challenges of climate change mitigation efforts for the implementation of scalable solutions.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"31 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fclim.2024.1273632","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Natural climate solutions have been proposed as a way to mitigate climate change by removing CO2 and other greenhouse gases from the atmosphere and increasing carbon storage in ecosystems. The adoption of such practices is required at large spatial and temporal scales, which means that local implementation across different land use and conservation sectors must be coordinated at landscape and regional levels. Here, we describe the spatiotemporal domains of research in the field of climate solutions and, as a first approximation, we use the Pacific Northwest (PNW) of the United States as a model system to evaluate the potential for coordinated implementations. By combining estimates of soil organic carbon stocks and CO2 fluxes with projected changes in climate, we show how land use may be prioritized to improve carbon drawdown and permanence across multiple sectors at local to regional scales. Our consideration of geographical context acknowledges some of the ecological and social challenges of climate change mitigation efforts for the implementation of scalable solutions.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico