Inclusion chromatic index of random graphs

Pub Date : 2024-02-14 DOI:10.1002/jgt.23088
Jakub Kwaśny, Jakub Przybyło
{"title":"Inclusion chromatic index of random graphs","authors":"Jakub Kwaśny,&nbsp;Jakub Przybyło","doi":"10.1002/jgt.23088","DOIUrl":null,"url":null,"abstract":"<p>Erdős and Wilson proved in 1977 that almost all graphs have chromatic index equal to their maximum degree. In 2001 Balister extended this result and proved that the same number of colours is almost always sufficient if we additionally demand the distinctness of the sets of colours incident with any two vertices. We study a stronger condition and show that one more colour is almost always sufficient and necessary if the inclusion of these sets is forbidden for any pair of adjacent vertices. We also settle the value of a more restrictive graph invariant for almost all graphs, where inclusion is forbidden for all pairs of vertices, which necessitates one more colour for graphs of even order.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Erdős and Wilson proved in 1977 that almost all graphs have chromatic index equal to their maximum degree. In 2001 Balister extended this result and proved that the same number of colours is almost always sufficient if we additionally demand the distinctness of the sets of colours incident with any two vertices. We study a stronger condition and show that one more colour is almost always sufficient and necessary if the inclusion of these sets is forbidden for any pair of adjacent vertices. We also settle the value of a more restrictive graph invariant for almost all graphs, where inclusion is forbidden for all pairs of vertices, which necessitates one more colour for graphs of even order.

分享
查看原文
随机图的包含色度指数
Erdős 和 Wilson 于 1977 年证明,几乎所有图形的色度指数都等于其最大度数。2001 年,Balister 扩展了这一结果,并证明如果我们额外要求任意两个顶点的颜色集是不同的,那么相同数量的颜色几乎总是足够的。我们研究了一个更强的条件,并证明如果禁止任何一对相邻顶点包含这些颜色集,那么多一种颜色几乎总是充分且必要的。我们还确定了一个几乎适用于所有图形的限制性更强的图形不变式的价值,即禁止包含所有顶点对,这就要求偶数阶图形多一种颜色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信