Advancing TBM Performance: Integrating Shield Friction Analysis and Machine Learning in Geotechnical Engineering

Marcel Schlicke, Helmut Wannenmacher, K. Nübel
{"title":"Advancing TBM Performance: Integrating Shield Friction Analysis and Machine Learning in Geotechnical Engineering","authors":"Marcel Schlicke, Helmut Wannenmacher, K. Nübel","doi":"10.3390/geotechnics4010010","DOIUrl":null,"url":null,"abstract":"The Ylvie model is a novel method towards transparent Tunnel Boring Machine (TBM) data analysis for tunnel construction. The model innovatively applies machine learning to automate friction loss computation per stroke, enhancing TBM performance prediction in varying geomechanical environments. This research considers the complexities of TBM mechanics, focusing on the Thrust Penetration Gradient (TPG) and shield friction influenced by geological conditions. By integrating operational data analysis with geological exploration, the Ylvie model transcends traditional methodologies, allowing for a comprehensible and specific determination of the friction loss towards more precise penetration rate prediction. The model’s capability is validated through comparative analysis with established methods, demonstrating its effectiveness even in challenging hard rock tunneling scenarios. This study marks a significant advancement in TBM performance analysis, suggesting potential for the expanded application and future integration of additional data sources for comprehensive rock mass characterization.","PeriodicalId":505610,"journal":{"name":"Geotechnics","volume":"49 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotechnics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geotechnics4010010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Ylvie model is a novel method towards transparent Tunnel Boring Machine (TBM) data analysis for tunnel construction. The model innovatively applies machine learning to automate friction loss computation per stroke, enhancing TBM performance prediction in varying geomechanical environments. This research considers the complexities of TBM mechanics, focusing on the Thrust Penetration Gradient (TPG) and shield friction influenced by geological conditions. By integrating operational data analysis with geological exploration, the Ylvie model transcends traditional methodologies, allowing for a comprehensible and specific determination of the friction loss towards more precise penetration rate prediction. The model’s capability is validated through comparative analysis with established methods, demonstrating its effectiveness even in challenging hard rock tunneling scenarios. This study marks a significant advancement in TBM performance analysis, suggesting potential for the expanded application and future integration of additional data sources for comprehensive rock mass characterization.
提高 TBM 性能:岩土工程中的盾构摩擦分析与机器学习相结合
Ylvie 模型是一种用于隧道施工的透明隧道掘进机(TBM)数据分析的新方法。该模型创新性地将机器学习应用于自动计算每个冲程的摩擦损失,从而提高了在不同地质力学环境下的隧道掘进机性能预测。这项研究考虑了 TBM 力学的复杂性,重点关注受地质条件影响的推力穿透梯度(TPG)和盾构摩擦。通过将运行数据分析与地质勘探相结合,Ylvie 模型超越了传统方法,可对摩擦损失进行可理解的具体测定,从而实现更精确的贯入率预测。该模型的能力通过与既有方法的对比分析得到了验证,证明了其在具有挑战性的硬岩隧道方案中的有效性。这项研究标志着隧道掘进机性能分析方面的重大进步,为今后扩展应用和整合更多数据源以进行全面岩体表征提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信