Complementary Mass Transport Investigations in Open-Cell Foams: Full-Field Computational Fluid Dynamics Simulation with Random-Walk Microscopic Particle Tracking and Methane Nuclear Magnetic Resonance Displacement Measurements

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL
Mehrdad Sadeghi, Andreas Brix, Sebastian Trunk, Georg R. Pesch, Hannsjörg Freund, Jorg Thöming
{"title":"Complementary Mass Transport Investigations in Open-Cell Foams: Full-Field Computational Fluid Dynamics Simulation with Random-Walk Microscopic Particle Tracking and Methane Nuclear Magnetic Resonance Displacement Measurements","authors":"Mehrdad Sadeghi,&nbsp;Andreas Brix,&nbsp;Sebastian Trunk,&nbsp;Georg R. Pesch,&nbsp;Hannsjörg Freund,&nbsp;Jorg Thöming","doi":"10.1007/s11242-023-02045-w","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical simulation can provide detailed understanding of mass transport within complex structures. For this purpose, numerical tools are required that can resolve the complex morphology and consider the contribution of both convection and diffusion. Solving the Navier–Stokes equations alone, however, neglects self<b>-</b>diffusion. This influences the simulated displacement distribution of flow especially in porous media at low Péclet numbers (Pe &lt; 16) and in near-wall regions where diffusion is the dominant mechanism. To address this problem, this study uses μCT-based computational fluid dynamics (CFD) simulations in OpenFOAM coupled with the random-walk particle tracking (PT) module <i>disTrackFoam</i> and cross-validated experimentally using pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) measurements of gas flow within open-cell foams (OCFs). The results of the multi-scale simulations—with a resolution of 130–190 µm—and experimental PFG NMR data are compared in terms of diffusion propagators, which are microscopic displacement distributions of gas flows in OCFs during certain observation times. Four different flow rates with Péclet numbers in the range of 0.7–16 are studied in the laminar flow regime within 10 and 20 PPI OCFs, and axial dispersion coefficients were calculated. Cross-validation of PFG NMR measurements and CFD-PT simulations revealed a very good matching with integral differences below 0.04%, underpinning the capability of both complementary methods for multi-scale transport analysis.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-023-02045-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-023-02045-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical simulation can provide detailed understanding of mass transport within complex structures. For this purpose, numerical tools are required that can resolve the complex morphology and consider the contribution of both convection and diffusion. Solving the Navier–Stokes equations alone, however, neglects self-diffusion. This influences the simulated displacement distribution of flow especially in porous media at low Péclet numbers (Pe < 16) and in near-wall regions where diffusion is the dominant mechanism. To address this problem, this study uses μCT-based computational fluid dynamics (CFD) simulations in OpenFOAM coupled with the random-walk particle tracking (PT) module disTrackFoam and cross-validated experimentally using pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) measurements of gas flow within open-cell foams (OCFs). The results of the multi-scale simulations—with a resolution of 130–190 µm—and experimental PFG NMR data are compared in terms of diffusion propagators, which are microscopic displacement distributions of gas flows in OCFs during certain observation times. Four different flow rates with Péclet numbers in the range of 0.7–16 are studied in the laminar flow regime within 10 and 20 PPI OCFs, and axial dispersion coefficients were calculated. Cross-validation of PFG NMR measurements and CFD-PT simulations revealed a very good matching with integral differences below 0.04%, underpinning the capability of both complementary methods for multi-scale transport analysis.

Abstract Image

开孔泡沫中的互补质量传输研究:全场计算流体力学模拟与随机漫步微观粒子跟踪和甲烷核磁共振位移测量
数值模拟可以详细了解复杂结构内的质量传输。为此,需要能够解析复杂形态并考虑对流和扩散作用的数值工具。然而,仅求解纳维-斯托克斯方程会忽略自扩散。这影响了流动的模拟位移分布,尤其是在低佩克莱特数(Pe <16)的多孔介质中和以扩散为主要机制的近壁区域。为了解决这个问题,本研究在 OpenFOAM 中使用基于 μCT 的计算流体力学(CFD)模拟,并结合随机漫步粒子跟踪(PT)模块 disTrackFoam,同时使用脉冲场梯度(PFG)核磁共振(NMR)测量开孔泡沫(OCFs)中的气体流动,通过实验进行交叉验证。多尺度模拟(分辨率为 130-190 微米)的结果与脉冲场梯度核磁共振实验数据在扩散传播器方面进行了比较,扩散传播器是特定观测时间内 OCF 中气体流动的微观位移分布。研究了 10 和 20 PPI OCF 内层流状态下佩克莱特数在 0.7-16 范围内的四种不同流速,并计算了轴向弥散系数。PFG NMR 测量和 CFD-PT 模拟的交叉验证结果表明,两者的匹配度非常高,积分差异低于 0.04%,证明了这两种互补方法在多尺度传输分析方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transport in Porous Media
Transport in Porous Media 工程技术-工程:化工
CiteScore
5.30
自引率
7.40%
发文量
155
审稿时长
4.2 months
期刊介绍: -Publishes original research on physical, chemical, and biological aspects of transport in porous media- Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)- Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications- Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes- Expanded in 2007 from 12 to 15 issues per year. Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信