{"title":"End-to-end deep learning-based framework for path planning and collision checking: bin-picking application","authors":"Mehran Ghafarian Tamizi, Homayoun Honari, Aleksey Nozdryn-Plotnicki, Homayoun Najjaran","doi":"10.1017/s0263574724000109","DOIUrl":null,"url":null,"abstract":"Real-time and efficient path planning is critical for all robotic systems. In particular, it is of greater importance for industrial robots since the overall planning and execution time directly impact the cycle time and automation economics in production lines. While the problem may not be complex in static environments, classical approaches are inefficient in high-dimensional environments in terms of planning time and optimality. Collision checking poses another challenge in obtaining a real-time solution for path planning in complex environments. To address these issues, we propose an end-to-end learning-based framework viz., Path Planning and Collision checking Network (PPCNet). The PPCNet generates the path by computing waypoints sequentially using two networks: the first network generates a waypoint, and the second one determines whether the waypoint is on a collision-free segment of the path. The end-to-end training process is based on imitation learning that uses data aggregation from the experience of an expert planner to train the two networks, simultaneously. We utilize two approaches for training a network that efficiently approximates the exact geometrical collision checking function. Finally, the PPCNet is evaluated in two different simulation environments and a practical implementation on a robotic arm for a bin-picking application. Compared to the state-of-the-art path-planning methods, our results show significant improvement in performance by greatly reducing the planning time with comparable success rates and path lengths.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000109","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time and efficient path planning is critical for all robotic systems. In particular, it is of greater importance for industrial robots since the overall planning and execution time directly impact the cycle time and automation economics in production lines. While the problem may not be complex in static environments, classical approaches are inefficient in high-dimensional environments in terms of planning time and optimality. Collision checking poses another challenge in obtaining a real-time solution for path planning in complex environments. To address these issues, we propose an end-to-end learning-based framework viz., Path Planning and Collision checking Network (PPCNet). The PPCNet generates the path by computing waypoints sequentially using two networks: the first network generates a waypoint, and the second one determines whether the waypoint is on a collision-free segment of the path. The end-to-end training process is based on imitation learning that uses data aggregation from the experience of an expert planner to train the two networks, simultaneously. We utilize two approaches for training a network that efficiently approximates the exact geometrical collision checking function. Finally, the PPCNet is evaluated in two different simulation environments and a practical implementation on a robotic arm for a bin-picking application. Compared to the state-of-the-art path-planning methods, our results show significant improvement in performance by greatly reducing the planning time with comparable success rates and path lengths.
期刊介绍:
Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.