Optimizing Sentinel-2 feature space for improved crop biophysical and biochemical variables retrieval using the novel spectral triad feature selection algorithm

IF 3.3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Mahlatse Kganyago, Clement Adjorlolo, Paidamwoyo Mhangara
{"title":"Optimizing Sentinel-2 feature space for improved crop biophysical and biochemical variables retrieval using the novel spectral triad feature selection algorithm","authors":"Mahlatse Kganyago, Clement Adjorlolo, Paidamwoyo Mhangara","doi":"10.1080/10106049.2024.2309174","DOIUrl":null,"url":null,"abstract":"This study presents a novel Spectral Triad feature selection (STfs) technique based on music theory and compares it to the entire Sentinel-2 feature space and Random Forest-Recursive Feature Elimin...","PeriodicalId":12532,"journal":{"name":"Geocarto International","volume":"20 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geocarto International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/10106049.2024.2309174","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel Spectral Triad feature selection (STfs) technique based on music theory and compares it to the entire Sentinel-2 feature space and Random Forest-Recursive Feature Elimin...
利用新型光谱三要素特征选择算法优化哨兵-2 号特征空间以改进作物生物物理和生物化学变量检索
本研究提出了一种基于音乐理论的新型光谱三元组特征选择(STfs)技术,并将其与整个哨兵-2(Sentinel-2)特征空间和随机森林-递归特征选择(Random Forest-Recursive Feature Elimin)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geocarto International
Geocarto International ENVIRONMENTAL SCIENCES-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
6.30
自引率
13.20%
发文量
407
审稿时长
>12 weeks
期刊介绍: Geocarto International is a professional academic journal serving the world-wide scientific and user community in the fields of remote sensing, GIS, geoscience and environmental sciences. The journal is designed: to promote multidisciplinary research in and application of remote sensing and GIS in geosciences and environmental sciences; to enhance international exchange of information on new developments and applications in the field of remote sensing and GIS and related disciplines; to foster interest in and understanding of science and applications on remote sensing and GIS technologies; and to encourage the publication of timely papers and research results on remote sensing and GIS applications in geosciences and environmental sciences from the world-wide science community. The journal welcomes contributions on the following: precise, illustrated papers on new developments, technologies and applications of remote sensing; research results in remote sensing, GISciences and related disciplines; Reports on new and innovative applications and projects in these areas; and assessment and evaluation of new remote sensing and GIS equipment, software and hardware.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信