Using large language models to generate silicon samples in consumer and marketing research: Challenges, opportunities, and guidelines

Marko Sarstedt, Susanne J. Adler, Lea Rau, Bernd Schmitt
{"title":"Using large language models to generate silicon samples in consumer and marketing research: Challenges, opportunities, and guidelines","authors":"Marko Sarstedt, Susanne J. Adler, Lea Rau, Bernd Schmitt","doi":"10.1002/mar.21982","DOIUrl":null,"url":null,"abstract":"Should consumer researchers employ silicon samples and artificially generated data based on large language models, such as GPT, to mimic human respondents' behavior? In this paper, we review recent research that has compared result patterns from silicon and human samples, finding that results vary considerably across different domains. Based on these results, we present specific recommendations for silicon sample use in consumer and marketing research. We argue that silicon samples hold particular promise in upstream parts of the research process such as qualitative pretesting and pilot studies, where researchers collect external information to safeguard follow-up design choices. We also provide a critical assessment and recommendations for using silicon samples in main studies. Finally, we discuss ethical issues of silicon sample use and present future research avenues.","PeriodicalId":501349,"journal":{"name":"Psychology and Marketing","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychology and Marketing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mar.21982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Should consumer researchers employ silicon samples and artificially generated data based on large language models, such as GPT, to mimic human respondents' behavior? In this paper, we review recent research that has compared result patterns from silicon and human samples, finding that results vary considerably across different domains. Based on these results, we present specific recommendations for silicon sample use in consumer and marketing research. We argue that silicon samples hold particular promise in upstream parts of the research process such as qualitative pretesting and pilot studies, where researchers collect external information to safeguard follow-up design choices. We also provide a critical assessment and recommendations for using silicon samples in main studies. Finally, we discuss ethical issues of silicon sample use and present future research avenues.
在消费者和营销研究中使用大型语言模型生成硅样本:挑战、机遇和指导原则
消费者研究人员是否应该使用硅样本和基于大型语言模型(如 GPT)的人工生成数据来模仿人类受访者的行为?在本文中,我们回顾了比较硅样本和人类样本结果模式的最新研究,发现不同领域的结果差异很大。基于这些结果,我们提出了在消费者和营销研究中使用硅样本的具体建议。我们认为,硅样本在研究过程的上游环节(如定性预试和试点研究)中大有可为,在这些环节中,研究人员可以收集外部信息,为后续设计选择提供保障。我们还为在主要研究中使用硅样本提供了批判性评估和建议。最后,我们讨论了使用硅样本的伦理问题,并提出了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信