{"title":"Sub-Doppler laser cooling and magnetic trapping of natural-abundance fermionic potassium","authors":"Mateusz Bocheński, Mariusz Semczuk","doi":"10.1088/1361-6455/ad2181","DOIUrl":null,"url":null,"abstract":"We demonstrate the largest number of <sup>40</sup>K atoms that has ever been cooled to deeply sub-Doppler temperatures in a single-chamber apparatus without using an enriched source of potassium. With gray molasses cooling on the <italic toggle=\"yes\">D</italic>\n<sub>1</sub>-line following a standard <italic toggle=\"yes\">D</italic>\n<sub>2</sub>-line magneto-optical trap, we obtain <inline-formula>\n<tex-math><?CDATA $3\\times10^5$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>3</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mn>5</mml:mn></mml:msup></mml:math>\n<inline-graphic xlink:href=\"bad2181ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> atoms at 10(2) <italic toggle=\"yes\">µ</italic>K. We reach densities high enough to measure the temperature via absorption imaging using the time-of-flight method. We magnetically trap a mixture of <inline-formula>\n<tex-math><?CDATA $m_F = -3/2,-5/2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi>m</mml:mi><mml:mi>F</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mo>−</mml:mo><mml:mn>3</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mo>−</mml:mo><mml:mn>5</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:math>\n<inline-graphic xlink:href=\"bad2181ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and <inline-formula>\n<tex-math><?CDATA $-7/2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mo>−</mml:mo><mml:mn>7</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:math>\n<inline-graphic xlink:href=\"bad2181ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> Zeeman states of the <inline-formula>\n<tex-math><?CDATA $F = 7/2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>F</mml:mi><mml:mo>=</mml:mo><mml:mn>7</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:math>\n<inline-graphic xlink:href=\"bad2181ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> hyperfine ground state confining <inline-formula>\n<tex-math><?CDATA $5\\times10^4$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>5</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mn>4</mml:mn></mml:msup></mml:math>\n<inline-graphic xlink:href=\"bad2181ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> atoms with a lifetime of 0.6 s or <inline-formula>\n<tex-math><?CDATA ${\\sim}10^3$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo>∼</mml:mo></mml:mrow><mml:msup><mml:mn>10</mml:mn><mml:mn>3</mml:mn></mml:msup></mml:math>\n<inline-graphic xlink:href=\"bad2181ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> atoms with a lifetime of 2.8 s—depending on whether the temperature of the potassium dispensers was chosen to maximize the atom number or the lifetime. The background pressure-limited lifetime of 0.6 s is a reasonable starting point for proof-of-principle experiments with atoms and/or molecules in optical tweezers as well as for sympathetic cooling with another species if transport to a secondary chamber is implemented. Our results show that unenriched potassium can be used to optimize experimental setups containing <sup>40</sup>K in the initial stages of their construction, which can effectively extend the lifetime of enriched sources. Moreover, the demonstration of sub-Doppler cooling and magnetic trapping of a relatively small number of potassium atoms might influence experiments with laser-cooled radioactive isotopes of potassium.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"86 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad2181","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate the largest number of 40K atoms that has ever been cooled to deeply sub-Doppler temperatures in a single-chamber apparatus without using an enriched source of potassium. With gray molasses cooling on the D1-line following a standard D2-line magneto-optical trap, we obtain 3×105 atoms at 10(2) µK. We reach densities high enough to measure the temperature via absorption imaging using the time-of-flight method. We magnetically trap a mixture of mF=−3/2,−5/2 and −7/2 Zeeman states of the F=7/2 hyperfine ground state confining 5×104 atoms with a lifetime of 0.6 s or ∼103 atoms with a lifetime of 2.8 s—depending on whether the temperature of the potassium dispensers was chosen to maximize the atom number or the lifetime. The background pressure-limited lifetime of 0.6 s is a reasonable starting point for proof-of-principle experiments with atoms and/or molecules in optical tweezers as well as for sympathetic cooling with another species if transport to a secondary chamber is implemented. Our results show that unenriched potassium can be used to optimize experimental setups containing 40K in the initial stages of their construction, which can effectively extend the lifetime of enriched sources. Moreover, the demonstration of sub-Doppler cooling and magnetic trapping of a relatively small number of potassium atoms might influence experiments with laser-cooled radioactive isotopes of potassium.
期刊介绍:
Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.