Charge Transport and Ion Kinetics in 1D TiS2 Structures are Dependent on the Introduction of Selenium Extrinsic Atoms

IF 4.8 Q2 NANOSCIENCE & NANOTECHNOLOGY
Edwin J. Miller, Kameron R. Hansen and Luisa Whittaker-Brooks*, 
{"title":"Charge Transport and Ion Kinetics in 1D TiS2 Structures are Dependent on the Introduction of Selenium Extrinsic Atoms","authors":"Edwin J. Miller,&nbsp;Kameron R. Hansen and Luisa Whittaker-Brooks*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00059","DOIUrl":null,"url":null,"abstract":"<p >Improving charge insertion into intercalation hosts is essential for crucial energy and memory technologies. The layered material TiS<sub>2</sub> provides a promising template for study, but further development of this compound demands improvement to its ion kinetics. Here, we report the incorporation of Se atoms into TiS<sub>2</sub> nanobelts to address barriers related to sluggish ion motion in the material. TiS<sub>1.8</sub>Se<sub>0.2</sub> nanobelts are synthesized through a solid-state method, and structural and electrochemical characterizations reveal that solid solutions based on TiS<sub>1.8</sub>Se<sub>0.2</sub> nanobelts display increased interlayer spacing and electrical conductivity compared to pure TiS<sub>2</sub> nanobelts. Cyclic voltammetry and electrochemical impedance spectroscopy indicate that the capacitive behavior of the TiS<sub>2</sub> electrode is improved upon Se incorporation, particularly at low depths of discharge in the materials. The presence of Se in the structure can be directly related to an increased pseudocapacitive contribution to electrode behavior at a low Li<sup>+</sup> content in the material and thus to improved ion kinetics in the TiS<sub>1.8</sub>Se<sub>0.2</sub> nanobelts.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"4 2","pages":"146–157"},"PeriodicalIF":4.8000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00059","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Improving charge insertion into intercalation hosts is essential for crucial energy and memory technologies. The layered material TiS2 provides a promising template for study, but further development of this compound demands improvement to its ion kinetics. Here, we report the incorporation of Se atoms into TiS2 nanobelts to address barriers related to sluggish ion motion in the material. TiS1.8Se0.2 nanobelts are synthesized through a solid-state method, and structural and electrochemical characterizations reveal that solid solutions based on TiS1.8Se0.2 nanobelts display increased interlayer spacing and electrical conductivity compared to pure TiS2 nanobelts. Cyclic voltammetry and electrochemical impedance spectroscopy indicate that the capacitive behavior of the TiS2 electrode is improved upon Se incorporation, particularly at low depths of discharge in the materials. The presence of Se in the structure can be directly related to an increased pseudocapacitive contribution to electrode behavior at a low Li+ content in the material and thus to improved ion kinetics in the TiS1.8Se0.2 nanobelts.

Abstract Image

Abstract Image

一维 TiS2 结构中的电荷传输和离子动力学取决于硒外原子的引入
改进电荷插入插层寄主对于关键的能源和记忆技术至关重要。层状材料 TiS2 为研究提供了一个很有前景的模板,但进一步开发这种化合物需要改进其离子动力学。在此,我们报告了在 TiS2 纳米颗粒中加入 Se 原子的情况,以解决与该材料中离子运动迟缓有关的障碍。通过固态方法合成了 TiS1.8Se0.2 纳米颗粒,结构和电化学特性分析表明,与纯 TiS2 纳米颗粒相比,基于 TiS1.8Se0.2 纳米颗粒的固溶体显示出更大的层间距和导电性。循环伏安法和电化学阻抗谱显示,加入 Se 后,TiS2 电极的电容行为得到改善,尤其是在材料的低放电深度。结构中 Se 的存在可能与材料中 Li+ 含量较低时电极行为的伪电容贡献增加直接相关,因此也与 TiS1.8Se0.2 纳米颗粒中离子动力学的改善有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nanoscience Au
ACS Nanoscience Au 材料科学、纳米科学-
CiteScore
4.20
自引率
0.00%
发文量
0
期刊介绍: ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信