Zhouyu Zhang, Zi-Jin Wei, Mengjie Sun, Zichao Yan, Chang Yin, Wei Wang and Zhi Yuan
{"title":"A hypochlorite-activatable persistent luminescence nanoprobe for assisted tumor resection†","authors":"Zhouyu Zhang, Zi-Jin Wei, Mengjie Sun, Zichao Yan, Chang Yin, Wei Wang and Zhi Yuan","doi":"10.1039/D3QM01308A","DOIUrl":null,"url":null,"abstract":"<p >Surgical resection is widely recognized as one of the most effective treatments for cancer. However, it requires precise and convenient visualization of tumor boundaries to assist surgeons. Persistent luminescence nanoparticles (PLNPs) exhibit bright and long-lasting afterglow, non-autofluorescence interference, and excellent photostability, making them ideal candidates for surgical navigation. Nevertheless, the currently used persistent luminescence tumor imaging method suffers from the issue of ambiguous tumor boundaries. Hence, a hypochlorite-responsive near-infrared (NIR) absorber A690 was bonded to ZnGa<small><sub>2</sub></small>O<small><sub>4</sub></small>:Cr<small><sup>3+</sup></small> (ZGC) PLNPs coated with DSPE-mPEG<small><sub>2000</sub></small> (ZGC@P&A). In normal tissue, ZGC@P&A was quenched due to the Förster resonance energy transfer from ZGC PLNPs to A690 molecules. Upon uptake by cancer cells, ZGC@P&A was turned “on” through the oxidation of A690 by high levels of hypochlorite. Compared to non-responsive ZGC@P, ZGC@P&A not only effectively eliminated interference from peripheral normal tissue afterglow but also accurately aligned with the tumor boundary within 30 minutes of peritumoral injection. Under the guidance of ZGC@P&A, the tumor was completely excised with minimal removal of surrounding tissue. Hypochlorite-activatable PLNPs greatly enhance the credibility of imaging, opening up new perspectives for a variety of clinical diagnostic applications.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 7","pages":" 1808-1815"},"PeriodicalIF":6.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d3qm01308a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Surgical resection is widely recognized as one of the most effective treatments for cancer. However, it requires precise and convenient visualization of tumor boundaries to assist surgeons. Persistent luminescence nanoparticles (PLNPs) exhibit bright and long-lasting afterglow, non-autofluorescence interference, and excellent photostability, making them ideal candidates for surgical navigation. Nevertheless, the currently used persistent luminescence tumor imaging method suffers from the issue of ambiguous tumor boundaries. Hence, a hypochlorite-responsive near-infrared (NIR) absorber A690 was bonded to ZnGa2O4:Cr3+ (ZGC) PLNPs coated with DSPE-mPEG2000 (ZGC@P&A). In normal tissue, ZGC@P&A was quenched due to the Förster resonance energy transfer from ZGC PLNPs to A690 molecules. Upon uptake by cancer cells, ZGC@P&A was turned “on” through the oxidation of A690 by high levels of hypochlorite. Compared to non-responsive ZGC@P, ZGC@P&A not only effectively eliminated interference from peripheral normal tissue afterglow but also accurately aligned with the tumor boundary within 30 minutes of peritumoral injection. Under the guidance of ZGC@P&A, the tumor was completely excised with minimal removal of surrounding tissue. Hypochlorite-activatable PLNPs greatly enhance the credibility of imaging, opening up new perspectives for a variety of clinical diagnostic applications.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.