Scalable all-perovskite double- and triple-junction solar modules: Modeling for configuration optimization

IF 8 2区 材料科学 Q1 ENERGY & FUELS
Yasuhiko Takeda, Ken-ichi Yamanaka, Naohiko Kato
{"title":"Scalable all-perovskite double- and triple-junction solar modules: Modeling for configuration optimization","authors":"Yasuhiko Takeda,&nbsp;Ken-ichi Yamanaka,&nbsp;Naohiko Kato","doi":"10.1002/pip.3786","DOIUrl":null,"url":null,"abstract":"<p>We modeled the photovoltaic conversion of all-perovskite (PVK) double- and triple-junction solar modules to clarify the configurations suitable for the monolithically series-interconnected structure, which offers high scalability by fully exploiting the advantages of the thin-film modules over wafer-based crystalline-silicon modules. We first formulated the photovoltaic processes of single cells and modules by reference to previously reported data, next optimized the module structure parameters including the bandgaps of PVKs, cell widths, and transparent-electrode thicknesses, and then evaluated the annually averaged conversion efficiencies (<i>η</i><sub>annual</sub>) defined by the ratio of the annual energy yield to the annual insolation in outdoor environments using a meteorological database. The double-junction four-terminal (2J-4T) module overcomes the shortcomings involved in the two-terminal module consisting of series-connected top and bottom cells, providing higher <i>η</i><sub>annual</sub> and more options of the top-cell bandgap; the latter allows us to select a more durable PVK composition. However, the dual output (four terminals) is practically a serious drawback. The double-junction voltage-matched (2J-VM) configuration eliminates this drawback, that is, realizes the single output (two terminals) with taking over the advantages of 2J-4T, and hence, 2J-VM would be the most promising candidate. However, when the VM configuration is applied to the triple-junction modules, the ohmic loss and optical loss in the transparent electrodes used for the three submodules are more detrimental. To mitigate this shortcoming, we proposed a new configuration of the triple-junction series/parallel-connecting voltage-matched (3J-SPVM) module. This uses only two substrates with securing high <i>η</i><sub>annual</sub> and other advantages of the VM configuration, which contributes to cost reduction. Consequently, 3J-SPVM is potentially the most promising configuration for widespread use.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 7","pages":"442-455"},"PeriodicalIF":8.0000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3786","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

We modeled the photovoltaic conversion of all-perovskite (PVK) double- and triple-junction solar modules to clarify the configurations suitable for the monolithically series-interconnected structure, which offers high scalability by fully exploiting the advantages of the thin-film modules over wafer-based crystalline-silicon modules. We first formulated the photovoltaic processes of single cells and modules by reference to previously reported data, next optimized the module structure parameters including the bandgaps of PVKs, cell widths, and transparent-electrode thicknesses, and then evaluated the annually averaged conversion efficiencies (ηannual) defined by the ratio of the annual energy yield to the annual insolation in outdoor environments using a meteorological database. The double-junction four-terminal (2J-4T) module overcomes the shortcomings involved in the two-terminal module consisting of series-connected top and bottom cells, providing higher ηannual and more options of the top-cell bandgap; the latter allows us to select a more durable PVK composition. However, the dual output (four terminals) is practically a serious drawback. The double-junction voltage-matched (2J-VM) configuration eliminates this drawback, that is, realizes the single output (two terminals) with taking over the advantages of 2J-4T, and hence, 2J-VM would be the most promising candidate. However, when the VM configuration is applied to the triple-junction modules, the ohmic loss and optical loss in the transparent electrodes used for the three submodules are more detrimental. To mitigate this shortcoming, we proposed a new configuration of the triple-junction series/parallel-connecting voltage-matched (3J-SPVM) module. This uses only two substrates with securing high ηannual and other advantages of the VM configuration, which contributes to cost reduction. Consequently, 3J-SPVM is potentially the most promising configuration for widespread use.

Abstract Image

可扩展的全过氧化物双结和三结太阳能模块:配置优化建模
我们建立了全长晶硅(PVK)双结和三结太阳能模块的光电转换模型,以明确适合单片串联互连结构的配置,这种结构充分发挥了薄膜模块相对于晶硅晶片模块的优势,具有很高的可扩展性。我们首先参考之前报道的数据制定了单个电池和模块的光伏过程,接下来优化了模块结构参数,包括 PVK 带隙、电池宽度和透明电极厚度,然后利用气象数据库评估了年平均转换效率 (η年),年平均转换效率的定义是年发电量与室外环境中年日照量之比。双结四终端(2J-4T)模块克服了由串联顶部和底部电池组成的双终端模块的缺点,提供了更高的η年率和更多的顶部电池带隙选择;后者允许我们选择更耐用的 PVK 组成。然而,双输出(四个端子)实际上是一个严重的缺点。双结电压匹配(2J-VM)配置消除了这一缺点,即在继承 2J-4T 优点的基础上实现了单输出(两个端子),因此,2J-VM 是最有前途的候选方案。然而,当 VM 配置应用于三重结模块时,三个子模块所用透明电极中的欧姆损耗和光损耗将更为不利。为了缓解这一缺陷,我们提出了一种新的三结串联/并联电压匹配(3J-SPVM)模块配置。这种模块仅使用两个基板,但却能确保高η年率以及电压匹配模块配置的其他优点,从而有助于降低成本。因此,3J-SPVM 有可能成为最有希望得到广泛应用的配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信