Utilizing machine learning to model interdependency of bulk molecular weight, solution concentration, and thickness of spin coated polystyrene thin films

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alexander Chenyu Wang, Samuel Z. Chen, Evan Xie, Matthew Chang, Anthony Zhu, Adam Hansen, John Jerome, Miriam Rafailovich
{"title":"Utilizing machine learning to model interdependency of bulk molecular weight, solution concentration, and thickness of spin coated polystyrene thin films","authors":"Alexander Chenyu Wang, Samuel Z. Chen, Evan Xie, Matthew Chang, Anthony Zhu, Adam Hansen, John Jerome, Miriam Rafailovich","doi":"10.1557/s43579-024-00527-6","DOIUrl":null,"url":null,"abstract":"<p>Spin coating is a quick and inexpensive method to create nanometer-thick thin films of various polymers on solid substrates. Since the film thickness determines the mechanical, optical, and degradation properties of the coating, it is essential to develop a simple method to predict thickness based on other manipulatable factors. In this study, a three-dimensional manifold simultaneously relating initial solution concentration, film thickness, and monodisperse bulk molecular weight is developed utilizing curve-fit machine learning on a dataset of spin coated polystyrene samples. Given values for any two of the three factors, the manifold presents an accurate corresponding value for the unknown.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"15 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00527-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spin coating is a quick and inexpensive method to create nanometer-thick thin films of various polymers on solid substrates. Since the film thickness determines the mechanical, optical, and degradation properties of the coating, it is essential to develop a simple method to predict thickness based on other manipulatable factors. In this study, a three-dimensional manifold simultaneously relating initial solution concentration, film thickness, and monodisperse bulk molecular weight is developed utilizing curve-fit machine learning on a dataset of spin coated polystyrene samples. Given values for any two of the three factors, the manifold presents an accurate corresponding value for the unknown.

Graphical abstract

Abstract Image

利用机器学习模拟旋涂聚苯乙烯薄膜的体积分子量、溶液浓度和厚度之间的相互依存关系
旋转涂层是在固体基底上形成纳米厚的各种聚合物薄膜的一种快速而廉价的方法。由于薄膜厚度决定了涂层的机械、光学和降解特性,因此必须开发一种简单的方法,根据其他可操作因素预测薄膜厚度。在本研究中,利用曲线拟合机器学习技术,在旋涂聚苯乙烯样品的数据集上开发出了同时与初始溶液浓度、薄膜厚度和单分散块状分子量相关的三维流形。给定三个因素中任何两个因素的值,流形就能准确地给出未知因素的相应值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MRS Communications
MRS Communications MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
2.60
自引率
10.50%
发文量
166
审稿时长
>12 weeks
期刊介绍: MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信